MiR-221 mediates the epithelial-mesenchymal transition of hepatocellular carcinoma by targeting AdipoR1.

Int J Biol Macromol

Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan 430022, China. Electronic address:

Published: October 2017

Recent studies have shown that miRNAs play vital roles in tumorigenesis. However, their effects on the epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) need to be better understood. Our present study demonstrates that miR-221, which is overexpressed in HCC tissues, promotes EMT in HCC cell lines by targeting a new gene, AdipoR1. First, overexpression of miR-221 was identified in 40 pairs of human HCC tumor and matched normal tissues. Moreover, we found that elevated miR-221 was strongly associated with worse clinicopathologic features in HCC patients. Next, the loss of miR-221 inhibited, but its restoration enhanced, the EMT process in HCC cell lines. Furthermore, bioinformatics software predicted that AdipoR1 would be a direct target of miR-221. We then observed negative regulation of miR-221 on AdipoR1 protein expression, and direct binding between them was further verified using dual-luciferase assays. In addition, knockdown of AdipoR1 resulted in promotion of the EMT in HCC cells, and AdipoR1 overexpression reversed the miR-221-induced EMT. Lastly, we found that the JAK/STAT3 pathway may be involved in the AdipoR1-mediated EMT process. In conclusion, miR-221 acts as a promoter of the EMT process in HCC cells by targeting AdipoR1, and this study highlights the potential effects of miR-221 on the prognosis and treatment of HCC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.05.108DOI Listing

Publication Analysis

Top Keywords

emt process
12
mir-221
9
hcc
9
epithelial-mesenchymal transition
8
hepatocellular carcinoma
8
targeting adipor1
8
emt hcc
8
hcc cell
8
cell lines
8
adipor1 overexpression
8

Similar Publications

Schwann cells, as crucial regenerative cells, possess the ability to facilitate axon growth following peripheral nerve injury. However, the regeneration efficiency dominated by Schwann cells is impaired by factors such as the severity of peripheral nervous injury, aging, and metabolic disease. Cause the limitations of clinical treatments, it is necessary to urgently search for new substances that could reinforce the functionality of Schwann cells and promote nerve regeneration.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges.

View Article and Find Full Text PDF

Gastric cancer (GC) is one of the most common gastrointestinal cancers worldwide, with consistently high morbidity and mortality rates and poor prognosis. Most patients are diagnosed at an advanced stage due to the lack of specific presentation in the early stages. Exosomes are a class of extracellular vesicles (EVs) widely found in body fluids and can release genetic material or multiple proteins to facilitate intercellular communication.

View Article and Find Full Text PDF

Scale-Up of Human Amniotic Epithelial Cells Through Regulation of Epithelial-Mesenchymal Plasticity Under Defined Conditions.

Adv Sci (Weinh)

January 2025

Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123, P. R. China.

Human amniotic epithelial cells (hAECs) have shown excellent efficacy in clinical research and have prospective applications in the treatment of many diseases. However, the properties of the hAECs and their proliferative mechanisms remain unclear. Here, single-cell RNA sequencing (scRNA-seq) is performed on hAECs obtained from amniotic tissues at different gestational ages and passages during in vitro culture.

View Article and Find Full Text PDF

RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (mA) and 5-methylcytosine (mC), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!