The incidence of type 2 diabetes is highly correlated with obesity; however, there is a lack of research elucidating the temporal progression. Transgenic FVB/N UCP-dta mice, which develop a diabetic phenotype, and their nontransgenic littermates were fed either a high-fat or normal-chow diet and were studied at 6, 9, 12, 15, 18, 21, and 24 weeks of age to test the hypothesis that increased lipid accumulation in skeletal muscle causes mitochondrial dysfunction, leading to the development of insulin resistance. Body composition, intramuscular triglyceride (IMTG) content, glucose metabolism, and mitochondrial function were measured to determine if IMTG drove mitochondrial dysfunction, leading to the development of type 2 diabetes. High-fat-fed transgenic mice had a significantly greater body mass, lipid mass, and IMTG content beginning early in the experiment. Glucose tolerance tests revealed that high-fat-fed transgenic mice developed a significantly insulin resistant response compared with the other 3 groups toward the end of the time course while plasma insulin was elevated very early in the time course. There was no significant difference in several measures of metabolic function throughout the time course. Long-term high-fat feeding in transgenic mice produced increases in IMTG, adiposity, body mass, and plasma insulin accompanied by decreases in glucose metabolism, but did not reveal any deficits in mitochondrial function or regulation during the early stage of the development of type 2 diabetes. It does not appear that lipotoxicity is driving defects in mitochondrial function prior to the onset of insulin resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/apnm-2016-0685 | DOI Listing |
Microb Biotechnol
January 2025
Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.
Glucose is the most abundant monosaccharide and a principal substrate in biotechnological production processes. In Pseudomonas, this sugar is either imported directly into the cytosol or first oxidised to gluconate in the periplasm. While gluconate is taken up via a proton-driven symporter, the import of glucose is mediated by an ABC-type transporter, and hence both require energy.
View Article and Find Full Text PDFNat Metab
January 2025
Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, the Key Laboratory of Endocrine and Metabolic Diseases of Shanxi Province, Taiyuan, China.
Skeletal muscle is a critical organ in maintaining homoeostasis against metabolic stress, and histone post-translational modifications are pivotal in those processes. However, the intricate nature of histone methylation in skeletal muscle and its impact on metabolic homoeostasis have yet to be elucidated. Here, we report that mitochondria-rich slow-twitch myofibers are characterized by significantly higher levels of H3K36me2 along with repressed expression of Kdm2a, an enzyme that specifically catalyses H3K36me2 demethylation.
View Article and Find Full Text PDFSci Rep
January 2025
School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
This study aimed to explore the effect of anthocyanin-rich black sugarcane on milk production, plasma antioxidant capacity, and the storage period DPPH scavenging capacity of milk in lactating dairy cows. Sixteen lactating dairy cows were stratified and randomly assigned into two balanced dietary groups, namely Anthocyanin-rich black sugarcane (AS), and Napier grass (NG). The AS group demonstrated a significant decrease (p < 0.
View Article and Find Full Text PDFActa Pharmacol Sin
January 2025
Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
Metabolic dysfunction-associated steatotic liver disease (MASLD) covers a broad spectrum of profile from simple fatty liver, evolving to metabolic dysfunction-associated steatohepatitis (MASH), to hepatic fibrosis, further progressing to cirrhosis and hepatocellular carcinoma (HCC). MASLD has become a prevalent disease with 25% in average over the world. MASH is an active stage, and requires pharmacological intervention when there is necroptotic damage with fibrotic progression.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Orthopedics and Traumatology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China.
Background: One of the etiologic components of degenerative spinal illnesses is intervertebral disc degeneration (IVDD), and the accompanying lower back pain is progressively turning into a significant public health problem. Important pathologic characteristics of IVDD include inflammation and acidic microenvironment, albeit it is unclear how these factors contribute to the disease.
Purpose: To clarify the functions of inflammation and the acidic environment in IVDD, identify the critical connections facilitating glycolytic crosstalk and nucleus pulposus cells (NPCs) pyroptosis, and offer novel approaches to IVDD prevention and therapy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!