Purpose Of Review: A discussion of recent research exploring the feasibility of perfusion-guided resuscitation of acute circulatory failure with a focus on lactate and microcirculation.
Recent Findings: Upon diagnosis of shock, hyperlactemia is associated with poor outcome and, under appropriate clinical circumstances, may reflect inadequate tissue perfusion. Persistent hyperlactemia despite resuscitation is even more strongly correlated with morbidity and mortality. Importantly, there is minimal coherence between lactate trends and static hemodynamic measures such as blood pressure, especially after the initial, hypovolemic phase of shock. During this early period, lactate guided-resuscitation is effective and possibly superior to hemodynamic-guided resuscitation. Similar to hyperlactemia, impaired microcirculation is ubiquitous in shock and is evident even in the setting of hemodynamic compensation (i.e., occult shock). Moreover, persistent microcirculatory derangement is associated with poor outcome and may reflect ongoing shock and/or long-lasting damage. Although the wait continues for a microcirculation-guided resuscitation trial, there is progress toward this goal.
Summary: Although questions remain, a multimodal perfusion-based approach to resuscitation is emerging with lactate and microcirculation as core measures. In this model, hyperlactemia and microcirculatory derangement support the diagnosis of shock, may help guide resuscitation during the initial period, and may reflect resuscitation efficacy and iatrogenic harm (e.g., fluid overload).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MCC.0000000000000423 | DOI Listing |
Background: High levels of catecholamines are cardiotoxic and associated with stress-induced cardiomyopathies. Septic patients are routinely exposed to endogenously released and exogenously administered catecholamines, which may alter cardiac function and perfusion causing ischemia. Early during human septic shock, left ventricular ejection fraction (LVEF) decreases but normalizes in survivors over 7-10 days.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Department of Anesthesiology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, 610041, China.
Background: Near-infrared spectroscopy (NIRS) enables a non-invasive measurement of tissue oxygen saturation (StO) in regions illuminated by near-infrared lights. Vascular occlusion test (VOT) serves as a model to artificially induce forearm ischemia-reperfusion. The combination of StO monitoring and VOT allows for dynamic evaluation of the balance between oxygen delivery and consumption in tissue, as well as the functional reserve of microcirculation.
View Article and Find Full Text PDFBiogerontology
January 2025
Song Biotechnologies LLC., Baltimore, MD, 21030, USA.
Human populations are experiencing unprecedented growth and longevity with lingering knowledge gaps of the characteristics, mechanisms, and pathologies of senescence. Invasive measurements and long-term control conditions for longitudinal studies are infeasible, necessitating the need for surrogate animal models. Rats have short lifespans (2-3 years) with translatable cardiovascular systems, and Sprague Dawley microcirculatory preparations are key to studying the oxygen transport mechanisms critical to the loss of skeletal muscle function in aging.
View Article and Find Full Text PDFDiagnostics (Basel)
November 2024
Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo 173-8610, Japan.
Background: Acute pancreatitis (AP) severity is correlated with systemic infection incidence in the acute phase, and it is important to assess inflammation during the disease course and to recognize infection at an early stage. As in sepsis, inflammation in AP impairs tissue oxygen metabolism and disrupts microcirculation. We performed a vascular occlusion test (VOT) via near-infrared spectroscopy (NIRS), which noninvasively monitors local oxygen in peripheral tissues, to evaluate tissue oxygen metabolism and blood circulation during the acute AP phase.
View Article and Find Full Text PDFWorld J Surg
December 2024
Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Background: Glycocalyx degradation is implicated in endothelial damage and microcirculatory dysfunction in sepsis, whereas the effectiveness of plasma syndecan-1 levels and sublingual microcirculatory parameters in evaluating sepsis's prognosis has not yet been determined. This study aims to track their dynamic changes and investigate the prognostic utility of these indexes in sepsis.
Methods: In this prospective study conducted at the First Affiliated Hospital of Sun Yat-sen University, blood samples were collected from adult surgical septic patients within 2 days after intensive care unit admission measuring plasma syndecan-1 concentrations.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!