A Peptoid Square Helix via Synergistic Control of Backbone Dihedral Angles.

J Am Chem Soc

Department of Chemistry, Bowdoin College , 6600 College Station, Brunswick, Maine 04011-8466, United States.

Published: June 2017

The continued expansion of the fields of macromolecular chemistry and nanoscience has motivated the development of new secondary structures that can serve as architectural elements of innovative materials, molecular machines, biological probes, and even commercial medicines. Synthetic foldamers are particularly attractive systems for developing such elements because they are specifically designed to facilitate synthetic manipulation and functional diversity. However, relatively few predictive design principles exist that permit both rational and modular control of foldamer secondary structure, while maintaining the capacity for facile diversification of displayed functionality. We demonstrate here that the synergistic application of two such principles in the design of peptoid foldamers yields a new and unique secondary structure that we term an "η-helix" due to its repeating turns, which are highly reminiscent of peptide β-turns. Solution-phase structures of η-helices were obtained by simulated annealing using NOE-derived distance restraints, and the NMR spectra of a series of designed η-helices were altogether consistent with the primary adoption of this structure. The structure is resilient to solvent and temperature changes, and accommodates diversification without requiring postsynthetic manipulation. The unique shape, broad structural stability, and synthetic accessibility of η-helices could facilitate their utilization in a wide range of applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b02319DOI Listing

Publication Analysis

Top Keywords

secondary structure
8
peptoid square
4
square helix
4
helix synergistic
4
synergistic control
4
control backbone
4
backbone dihedral
4
dihedral angles
4
angles continued
4
continued expansion
4

Similar Publications

We created a novel laboratory experience where undergraduate students explore the techniques used to study protein misfolding, unfolding, and aggregation. Despite the importance of protein misfolding and aggregation diseases, protein unfolding is not typically explored in undergraduate biochemistry laboratory classes. Yeast alcohol dehydrogenase (YADH) is used in the undergraduate biochemistry laboratory course at Miami University as the model system to explore protein overexpression and purification, bioinformatics, and enzyme characterization.

View Article and Find Full Text PDF

Background: Soy protein isolate (SPI) has poor emulsifying ability because of its low molecular flexibility and compact structure, limiting its application in extruded protein-based foods. Extrusion technology has emerged as a promising way to alter the structural properties of proteins. Therefore, the impacts of grape seed proanthocyanidin (GSP) on structural and emulsifying characteristics of SPI in extrusion field were explored in this study.

View Article and Find Full Text PDF

The hydrolysis of proteins by proteases (proteolysis) plays a significant role in biology and food science. Despite the importance of proteolysis, a universal quantitative model of this phenomenon has not yet been created. This review considers approaches to modeling proteolysis in a batch reactor that take into account differences in the hydrolysis of the individual peptide bonds, as well as the limited accessibility (masking) for the enzymes of some hydrolysis sites in the protein substrate.

View Article and Find Full Text PDF

The flavor of dairy products crucially affects consumer purchase preference. Although the flavor and sensory perception of milk can be influenced by heat treatment during processing, the exact mechanism remains unclear. Therefore, this study analyzed the whey protein content and structural changes of milk heated at different time and temperature combinations and evaluated the flavor compounds and sensory characteristics of milk.

View Article and Find Full Text PDF

Transcription factors (TFs) are the main regulators of eukaryotic gene expression. The cooperative binding of at least two TFs to genomic DNA is a major mechanism of transcription regulation. Massive analysis of the co-occurrence of overrepresented pairs of motifs for different target TFs studied in ChIP-seq experiments can clarify the mechanisms of TF cooperation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!