Palladium-Catalyzed Enantioselective Arylation of Aryl Sulfenate Anions: A Combined Experimental and Computational Study.

J Am Chem Soc

Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States.

Published: June 2017

A novel approach to produce chiral diaryl sulfoxides from aryl benzyl sulfoxides and aryl bromides via an enantioselective arylation of aryl sulfenate anions is reported. A (JosiPhos)Pd-based catalyst successfully promotes the asymmetric arylation reaction with good functional group compatibility. A wide range of enantioenriched diaryl, aryl heteroaryl, and even diheteroaryl sulfoxides were generated. Many of the sulfoxides prepared herein would be difficult to prepare via classic enantioselective oxidation of sulfides, including Ph(Ph-d)SO (90% ee, 95% yield). A DFT-based computational study suggested that chiral induction originates from two primary factors: (i) both a kinetic and a thermodynamic preference for oxidative addition that places the bromide trans to the JosiPhos-diarylphosphine moiety and (ii) Curtin-Hammett-type control over the interconversion between O- and S-bound isomers of palladium sulfenate species following rapid interconversion between re- and si-bound transmetalation products, re/si-Pd-OSPh (re/si-PdO-trans).

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.7b03623DOI Listing

Publication Analysis

Top Keywords

enantioselective arylation
8
arylation aryl
8
aryl sulfenate
8
sulfenate anions
8
computational study
8
sulfoxides aryl
8
aryl
5
palladium-catalyzed enantioselective
4
anions combined
4
combined experimental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!