The budding yeast is a long-standing model for the three-dimensional organization of eukaryotic genomes. However, even in this well-studied model, it is unclear how homolog pairing in diploids or environmental conditions influence overall genome organization. Here, we performed high-throughput chromosome conformation capture on diverged hybrid diploids to obtain the first global view of chromosome conformation in diploid yeasts. After controlling for the Rabl-like orientation using a polymer model, we observe significant homolog proximity that increases in saturated culture conditions. Surprisingly, we observe a localized increase in homologous interactions between the alleles specifically under galactose induction and saturated growth. This pairing is accompanied by relocalization to the nuclear periphery and requires Nup2, suggesting a role for nuclear pore complexes. Together, these results reveal that the diploid yeast genome has a dynamic and complex 3D organization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5476426 | PMC |
http://dx.doi.org/10.7554/eLife.23623 | DOI Listing |
Drug Metab Pharmacokinet
November 2024
Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan. Electronic address:
In the pharmaceutical research of viral respiratory infections, cell culture models have traditionally been used to evaluate the therapeutic effects of candidate compounds. Although cell lines are easy to handle and cost-effective, they do not fully replicate the characteristics of human respiratory organs. Recently, organoids and microphysiological systems (MPS) have been employed to overcome this limitation for in vitro testing of drugs against viral respiratory infections.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Experimental Physics V, Department of Physics, University of Bayreuth, D-95447 Bayreuth, Germany.
Photosynthetic microbes have evolved and successfully adapted to the ever-changing environmental conditions in complex microhabitats throughout almost all ecosystems on Earth. In the absence of light, they can sustain their biological functionalities through aerobic respiration, and even in anoxic conditions through anaerobic metabolic activity. For a suspension of photosynthetic microbes in an anaerobic environment, individual cellular motility is directly controlled by its photosynthetic activity, i.
View Article and Find Full Text PDFNature
January 2025
Southwest Research Institute, San Antonio, TX, USA.
Chorus waves are some of the strongest electromagnetic emissions naturally occurring in space and can cause radiation that is hazardous to humans and satellites. Although chorus waves have attracted extreme interest and been intensively studied for decades, their generation and evolution remain highly debated. Here, in contrast to the conventional expectation that chorus waves are governed by planetary magnetic dipolar fields, we report observations of repetitive, rising-tone chorus waves in the terrestrial neutral sheet, where the effects of the magnetic dipole are absent.
View Article and Find Full Text PDFBiochimie
January 2025
School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China. Electronic address:
Microorganisms play a crucial role in the degradation of microcystins (MCs), with most MC-degrading bacteria utilizing the mlr gene cluster (mlrABCD) mechanism. While previous studies have advanced our understanding of the structure, function, and degradation mechanisms of MlrA, MlrB, and MlrC, research on MlrD remains limited. Consequently, the molecular structure and specific catalytic processes of MlrD are still unclear.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
During meiosis, pairing between homologous chromosomes is stabilized by the assembly of the synaptonemal complex (SC). The SC ensures the formation of crossovers between homologous chromosomes and regulates their distribution. However, how the SC regulates crossover formation remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!