The extracellular matrix consists of a complex mixture of fibrillar proteins, in which the architecture and mechanical properties of the protein fibrils vary considerably in various tissues. Here, we systematically polymerized collagen gels at different temperatures, providing substrates with tunable mechanics and defined local microarchitecture. We studied the dependence of spreading dynamics, proliferation, migration, and differentiation of human mesenchymal stem cells (hMSCs) on the fibrillar properties as compared to the bulk properties of the matrix. We found that high fiber stiffness, together with shorter fiber lengths, limited the transfer of cellular traction forces to nearby fibers. As a result, cells were not able to build up sufficient tension, which suppressed cell spreading, proliferation, and migration. Cells on such fibers also showed limited focal adhesion formation and different lineage selection preferences. In contrast, cell spreading, proliferation, and migration was always associated with fiber recruitment, long-range deformations in the collagen gel networks and an increase in collagen density around cells. Typically, cells on such substrates had a preference for osteogenic differentiation and showed higher levels of focal adhesions formation. These results contribute to a further understanding of the mechanotransduction process and to the design criteria for future biomimetic materials for tissue-engineering applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5473018 | PMC |
http://dx.doi.org/10.1021/acsami.7b03883 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
Cleft lip and palate (CL/P) are prevalent congenital anomalies with complex genetic causes. The G874A mutation of T-box transcription factor 22 (TBX-22) gene is notably associated with CL/P, while the underlying mechanism remains to be clarified. Studies have shown that the restriction of epithelial-mesenchymal transformation (EMT) process in medial edge epithelial cells (MEEs) is crucial for CL/P development.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Lymphangiogenesis is vital for tissue fluid homeostasis, immune function, and lipid absorption. Abnormal lymphangiogenesis has been implicated in several diseases such as cancers, inflammatory, and autoimmune diseases. In this study, we elucidate the role of tsRNA-0032 in lymphangiogenesis and its molecular mechanism.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia. Electronic address:
Pyruvate dehydrogenase kinase-1 (PDK1) plays a crucial role in cancer cell metabolism by regulating the glycolytic pathway. Although, inhibitors targeting PDK1 have been effective in inhibiting glycolysis in multiple cancers, their lack of selectivity leading to off-target effects limit their therapeutic benefit. Herein, we investigated the inhibitory potential of six PDK1 inhibitors on cellular proliferation, migration, and invasion of androgen-sensitive LNCaP and androgen-negative PC-3 prostate cancer cells.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!