In our analysis of 136 water samples from wetland environments (rice paddies, natural wetland sites, man-made water bodies) in rural areas of North-East Thailand, Burkholderia pseudomallei was most prevalent in rice paddies (15 of the 30 positive sites). The high prevalence in the water of rice fields is indicative of the inherent vulnerability of farmers in rural agricultural areas in this area of Thailand and likely other locations in the tropics. Nearly all B. pseudomallei-positive sites were found within the vicinity of a large wetland associated with the Chi River, in the month of July 2014. Positive samples were found in water ranging in pH from 5.9 to 8.7, salinity ranging from 0.04 to 1.58 ppt, nitrate ranging from 0 to 10.8 ppm, and iron ranging from 0.003 to 1.519 ppm. Of these variables, only iron content was statistically higher in B. pseudomallei-positive versus B. pseudomallei-negative sites, suggesting that increasing concentrations of iron may encourage the growth of this bacterium, which is responsible for melioidosis. Our results, when combined with data from other published studies, support the notion that B. pseudomallei can exist in a wide range of environmental conditions. Thus, we argue that health safety education is a more appropriate means of addressing farmer vulnerability than chemical or physical alterations to fields at large scales. Further, it may be important to investigate melioidosis through transdisciplinary approaches that consider the complex social and ecological contexts in which the disease occurs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-017-5988-1DOI Listing

Publication Analysis

Top Keywords

burkholderia pseudomallei
8
wetland environments
8
north-east thailand
8
rice paddies
8
hydrological connectivity
4
connectivity burkholderia
4
pseudomallei prevalence
4
wetland
4
prevalence wetland
4
environments investigating
4

Similar Publications

Burkholderia pseudomallei (Bp), causing melioidosis, is becoming a major global public health concern. It is highly endemic in Southeast Asia (SEA) and Northern Australia and is persisting beyond the established areas of endemicity. This study aimed to determine the environmental variables that would predict the most suitable ecological niche for this pathogenic bacterium in SEA by maximum entropy (MaxEnt) modeling.

View Article and Find Full Text PDF

Hemolysin co-regulated protein 1 (Hcp1) is a component of the cluster 1 Type VI secretion system (T6SS1) that plays a key role during the intracellular lifecycle of Burkholderia pseudomallei. Hcp1 is recognized as a promising target antigen for developing melioidosis diagnostics and vaccines. While the gene encoding Hcp1 is retained across B.

View Article and Find Full Text PDF

Osteomyelitis and Septic Arthritis in the Darwin Prospective Melioidosis Study.

Open Forum Infect Dis

January 2025

Department of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia.

Background: Melioidosis is a multisystem infectious disease caused by the environmental bacterium . Osteomyelitis (OM) and septic arthritis (SA) are uncommon primary presentations for melioidosis but important secondary foci, often requiring prolonged therapy and multiple surgeries. We characterized the epidemiology, presentation, treatment, and outcomes of patients from 24 years of the Darwin Prospective Melioidosis Study (DPMS).

View Article and Find Full Text PDF

Burkholderia pseudomallei, the causative agent of melioidosis, is intrinsically resistant to multiple classes of antibiotics and primarily affects immunocompromised individuals, such as those with poorly controlled diabetes or malignancies. In this case, a 58-y-old female farmer with poorly controlled diabetes (HbA1c of 11.4%), metastatic breast cancer with chemotherapy-induced pancytopenia and disseminated melioidosis showed no improvement despite receiving antibiotics and supportive care.

View Article and Find Full Text PDF

Burkholderia pseudomallei, a soil-borne bacterium that causes melioidosis, endemic in South and Southeast Asia and northern Australia, is now emerging in new regions. Since the 1990s, cases have been reported in French overseas departments, including Martinique and Guadeloupe in the Caribbean, and Reunion Island and Mayotte in the Indian Ocean, suggesting a local presence of the bacterium. Our phylogenetic analysis of 111 B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!