Defects in regulatory T cells (Treg cells) aggravate multiple sclerosis (MS) after its onset and the absence of Treg cell functions can also exacerbate the course of disease in an animal model of MS. However, autoimmune neuroinflammation in many MS models can be acutely provoked in healthy animals leading to an activation of encephalitogenic T cells despite the induction of immune tolerance in the thymus including thymically produced (t)Treg cells. In contrast, neuroinflammation can be ameliorated or even completely prevented by the antigen-specific Treg cells formed extrathymically in the peripheral immune system (pTreg cells) during tolerogenic responses to relevant neuronal antigens. This review discusses the specific roles of Treg cells in blocking neuroinflammation, examines the impact of peripheral tolerance and dendritic cells on a relevant regulation of neuroinflammation, and explores some of the most recent advances in elucidation of specific mechanisms of the conversion and function of pTreg cells including the roles of CD5 and Hopx in these processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422564 | PMC |
http://dx.doi.org/10.3389/fimmu.2017.00532 | DOI Listing |
Acta Biomater
January 2025
College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China. Electronic address:
mRNA-based protein replacement therapy has become one of the most widely applied forms of mRNA therapy, with lipid nanoparticles (LNPs) being extensively studied as efficient delivery platforms for mRNA. However, existing LNPs tend to accumulate in the liver or kidneys after intravenous injection, highlighting the need to develop vectors capable of targeting specific organs. In this study, we synthesized a small library of ionizable lipids and identified PPz-2R as a promising candidate, exhibiting lung-targeting capabilities, high mRNA transfection efficiency, and good stability through structure-activity relationship studies.
View Article and Find Full Text PDFCytokine
January 2025
Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India. Electronic address:
Transforming growth factor-beta (TGF-β), displaying a dual role in immunosuppression and pathogenesis, has emerged as a key regulator of anti-leishmanial immune responses. In Leishmania infections, TGF-β drives immune deviation by enhancing regulatory T-cell (T-reg) differentiation and inhibiting macrophage activation, suppressing critical antiparasitic responses. This cytokine simultaneously promotes fibroblast proliferation, extracellular matrix production, and fibrosis in infected tissues, which aids in wound healing but impedes immune cell infiltration, particularly in visceral leishmaniasis, where splenic disorganization and compromised immune access are notable.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Department of Rheumatology and Immunology and Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, 100044, China.
Objectives: The objective of this study was to evaluate the efficacy and safety of tofacitinib in the treatment of active dermatomyositis (DM) and anti-synthetase syndrome (ASS).
Methods: Tofacitinib was administered at a dose of 5 mg twice daily to patients who exhibited inadequate response to conventional treatments. The primary end point was the reduction of T follicular helper (Tfh) cells at week 24.
J Exp Med
March 2025
Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Activation of CD8+ T cells necessitates rapid metabolic reprogramming to fulfill the substantial biosynthetic demands of effector functions. However, the posttranscriptional mechanisms underpinning this process remain obscure. The transfer RNA (tRNA) N1-methyladenine (m1A) modification, essential for tRNA stability and protein translation, has an undefined physiological function in CD8+ T cells, particularly in antitumor responses.
View Article and Find Full Text PDFSci Immunol
January 2025
Department of Immunology, Harvard Medical School; Boston, MA, USA.
Our understanding of the meningeal immune system has recently burgeoned, particularly regarding how innate and adaptive effector cells are mobilized to meet brain challenges. However, information on how meningeal immunocytes guard brain homeostasis in healthy individuals remains limited. This study highlights the heterogeneous, polyfunctional regulatory T cell (T) compartment in the meninges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!