The Importance of H in Particulate Organic Matter Stoichiometry, Export and Energy Flow.

Front Microbiol

Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawaii, HonoluluHI, USA.

Published: May 2017

The discipline of marine ecological stoichiometry has progressed rapidly over the past two decades, and continues to be at the forefront of microbial oceanography. Most of this effort has been focused on the elements carbon (C) and nitrogen (N), and to a lesser extent phosphorus (P), with little consideration of hydrogen (H), or the redox state of the organic matter pools despite the fact that H is the most abundant, and possibly the most important, element in biogeochemistry. Obtaining accurate estimates of the H content of organic matter, either in suspended or sinking particles, is a major analytical challenge. While many aquatic science laboratories have access to commercial "C-H-N elemental analyzers," few investigators report H values due to analytical difficulties in obtaining accurate estimates of H. Because organic compounds vary considerably in their H:C ratio and therefore in their energy content, measurements of H combined with C-specific caloric estimates will ultimately be required for a more comprehensive understanding of ecosystem dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422955PMC
http://dx.doi.org/10.3389/fmicb.2017.00826DOI Listing

Publication Analysis

Top Keywords

organic matter
12
obtaining accurate
8
accurate estimates
8
particulate organic
4
matter stoichiometry
4
stoichiometry export
4
export energy
4
energy flow
4
flow discipline
4
discipline marine
4

Similar Publications

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Guest-Molecule-Induced Glass-Crystal Transition in Organic-Inorganic Hybrid Antimony Halides.

Inorg Chem

January 2025

College of Chemistry and Materials Science, College of Environmental and Resource Sciences, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, China.

The glassy state of inorganic-organic hybrid metal halides combines their excellent optoelectronic properties with the outstanding processability of glass, showcasing unique application potential in solar devices, display technologies, and plastic electronics. Herein, by tailoring the organic cation from -phenylpiperazine to dimethylamine gradually, four types of zero-dimensional antimony halides are obtained with various optical and thermal properties. The guest water molecules in crystal (-phenylpiperazine)SbCl·Cl·5HO lead to the largest distortion of the Sb-halogen unit, resulting in the red emission different from the yellow emission of other compounds.

View Article and Find Full Text PDF

One-step adsorptive purification of ethylene (C2H4) from ternary mixture comprising of acetylene (C2H2), ethylene (C2H4) and carbon dioxide (CO2) is a great challenge in the chemical industry. Herein, a microporous metal-organic framework (FJI-H38) has been reported, which possesses a high density of electronegative O/N binding sites and appropriate pore size. Notably, at 0.

View Article and Find Full Text PDF

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!