Lafora disease (LD) is a fatal progressive epilepsy essentially caused by loss-of-function mutations in the glycogen phosphatase laforin or the ubiquitin E3 ligase malin. Glycogen in LD is hyperphosphorylated and poorly hydrosoluble. It precipitates and accumulates into neurotoxic Lafora bodies (LBs). The leading LD hypothesis that hyperphosphorylation causes the insolubility was recently challenged by the observation that phosphatase-inactive laforin rescues the laforin-deficient LD mouse model, apparently through correction of a general autophagy impairment. We were for the first time able to quantify brain glycogen phosphate. We also measured glycogen content and chain lengths, LBs, and autophagy markers in several laforin- or malin-deficient mouse lines expressing phosphatase-inactive laforin. We find that: (i) in laforin-deficient mice, phosphatase-inactive laforin corrects glycogen chain lengths, and not hyperphosphorylation, which leads to correction of glycogen amounts and prevention of LBs; (ii) in malin-deficient mice, phosphatase-inactive laforin confers no correction; (iii) general impairment of autophagy is not necessary in LD We conclude that laforin's principle function is to control glycogen chain lengths, in a malin-dependent fashion, and that loss of this control underlies LD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494504 | PMC |
http://dx.doi.org/10.15252/emmm.201707608 | DOI Listing |
EMBO Mol Med
July 2017
Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
Lafora disease (LD) is a fatal progressive epilepsy essentially caused by loss-of-function mutations in the glycogen phosphatase laforin or the ubiquitin E3 ligase malin. Glycogen in LD is hyperphosphorylated and poorly hydrosoluble. It precipitates and accumulates into neurotoxic Lafora bodies (LBs).
View Article and Find Full Text PDFJ Biosci
December 2015
Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208 016, India.
Lafora disease (LD), an autosomal recessive and fatal form of neurodegenerative disorder, is characterized by the presence of polyglucosan inclusions in the affected tissues including the brain. LD can be caused by defects either in the EPM2A gene coding for the laforin protein phosphatase or the NHLRC1 gene coding for the malin ubiquitin ligase. Since the clinical symptoms of LD patients representing the two genetic groups are very similar and since malin is known to interact with laforin, we were curious to examine the possibility that the two proteins regulate each other's function.
View Article and Find Full Text PDFGenomics
January 2012
Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, India.
The EPM2A gene, defective in the fatal neurodegenerative disorder Lafora disease (LD), is known to encode two distinct proteins by differential splicing; a phosphatase active cytoplasmic isoform and a phosphatase inactive nuclear isoform. We report here the identification of three novel EPM2A splice variants with potential to code for five distinct proteins in alternate reading frames. These novel isoforms, when ectopically expressed in cell lines, show distinct subcellular localization, interact with and serve as substrates of malin ubiquitin ligase-the second protein defective in LD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!