Tumor exomes provide comprehensive information on mutated, overexpressed genes and aberrant splicing, which can be exploited for personalized cancer immunotherapy. Of particular interest are mutated tumor antigen T-cell epitopes, because neoepitope-specific T cells often are tumoricidal. However, identifying tumor-specific T-cell epitopes is a major challenge. A widely used strategy relies on initial prediction of human leukocyte antigen-binding peptides by algorithms, but the predictive power of this approach is unclear. Here, we used the human tumor antigen NY-ESO-1 (ESO) and the human leukocyte antigen variant HLA-A*0201 (A2) as a model and predicted the 41 highest-affinity, A2-binding 8-11-mer peptides and assessed their binding, kinetic complex stability, and immunogenicity in A2-transgenic mice and on peripheral blood mononuclear cells from ESO-vaccinated melanoma patients. We found that 19 of the peptides strongly bound to A2, 10 of which formed stable A2-peptide complexes and induced CD8 T cells in A2-transgenic mice. However, only 5 of the peptides induced cognate T cells in humans; these peptides exhibited strong binding and complex stability and contained multiple large hydrophobic and aromatic amino acids. These results were not predicted by algorithms and provide new clues to improving T-cell epitope identification. In conclusion, our findings indicate that only a small fraction of -predicted A2-binding ESO peptides are immunogenic in humans, namely those that have high peptide-binding strength and complex stability. This observation highlights the need for improving predictions of peptide immunogenicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512077PMC
http://dx.doi.org/10.1074/jbc.M117.789511DOI Listing

Publication Analysis

Top Keywords

tumor antigen
12
t-cell epitopes
12
complex stability
12
antigen t-cell
8
human leukocyte
8
a2-transgenic mice
8
peptides
6
cell-based analyses
4
analyses reveal
4
reveal strong
4

Similar Publications

Specific Immune Responses and Oncolytic Effects Induced by EBV LMP2A-Armed Modified Ankara-Vaccinia Virus Vectored Vaccines in Nasopharyngeal Cancer.

Pharmaceutics

January 2025

NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.

Background: The Epstein-Barr virus (EBV) is intricately linked to a range of human malignancies, with EBV latent membrane protein 2A (LMP2A) emerging as a potential target antigen for immunotherapeutic strategies in the treatment of nasopharyngeal carcinoma (NPC).

Methods: The modified vaccinia virus Ankara (MVA) is universally used in vector vaccine research because of its excellent safety profile and highly efficient recombinant gene expression. Here, we constructed a novel MVA-LMP2A recombinant virus and investigated its specific immune response induction and oncolytic effect.

View Article and Find Full Text PDF

The Fontan operation has become the primary palliative treatment for patients with a functionally univentricular heart. The population of patients with Fontan circulation is constantly growing and aging. As the number of Fontan patients surviving into adulthood increases, there is a clear need for research on how best to follow these patients and manage their complications.

View Article and Find Full Text PDF

The present study aims to create spiro-N-(4-sulfamoyl-phenyl)-1,3,4-thiadiazole-2-carboxamide derivatives with anticancer activities. The in vitro anticancer evaluation showed that only the novel spiro-acenaphthylene tethered-[1,3,4]-thiadiazole (compound ) exhibited significant anticancer efficacy as a selective inhibitor of tumor-associated isoforms of carbonic anhydrase. Compound demonstrated considerable efficacy against the renal RXF393, colon HT29, and melanoma LOX IMVI cancer cell lines, with IC values of 7.

View Article and Find Full Text PDF

Prostate cancer, a leading cause of cancer-related mortality among men, often presents challenges in accurate diagnosis and effective monitoring. This systematic review explores the potential of exosomal biomolecules as noninvasive biomarkers for the diagnosis, prognosis, and treatment response of prostate cancer. A thorough systematic literature search through online public databases (Medline via PubMed, Scopus, and Web of science) using structured search terms and screening using predefined eligibility criteria resulted in 137 studies that we analyzed in this systematic review.

View Article and Find Full Text PDF

This study aimed to evaluate the diagnostic potential of soluble Programmed Death Ligand 1 (sPD-L1) and Programmed Death 1 (sPD-1) molecules in plasma, along with urinary mRNA biomarkers-Prostate-Specific Membrane Antigen (), Prostate Cancer Antigen 3 (), and androgen receptor () genes-for identifying clinically significant prostate cancer (PCa), defined as pathological stage 3. In a cohort of 68 PCa patients, sPD-L1 and sPD-1 levels were quantified using ELISA, while mRNA transcripts were measured by RT-qPCR. Results highlight the potential of integrating these liquid-based biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!