Cell-autonomous circadian oscillations strongly influence tissue physiology and pathophysiology of peripheral organs including the heart, in which the circadian clock is known to determine cardiac metabolism and the outcome of for instance ischemic stress. Human pluripotent stem cells represent a powerful tool to study developmental processes , but the extent to which human embryonic stem (ES) cell-derived cardiomyocytes establish circadian rhythmicity in the absence of a systemic context is unknown. Here we demonstrate that while undifferentiated human ES cells do not possess an intrinsic functional clock, oscillatory expression of known core clock genes emerges spontaneously during directed cardiac differentiation. We identify a set of clock-controlled output genes that contain an oscillatory network of stress-related transcripts. Furthermore, we demonstrate that this network results in a time-dependent functional response to doxorubicin, a frequently used anti-cancer drug with known cardiotoxic side effects. Taken together, our data provide a framework from which the effect of oscillatory gene expression on cardiomyocyte physiology can be modeled , and demonstrate the influence of a functional clock on experimental outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5494509PMC
http://dx.doi.org/10.15252/embr.201743897DOI Listing

Publication Analysis

Top Keywords

human embryonic
8
embryonic stem
8
stem cell-derived
8
cell-derived cardiomyocytes
8
functional clock
8
circadian
4
circadian networks
4
human
4
networks human
4
cardiomyocytes cell-autonomous
4

Similar Publications

Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.

View Article and Find Full Text PDF

Constitutive surface expression of the thromboxane A2 receptor is Pim kinase-dependent.

J Thromb Haemost

January 2025

Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:

Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.

View Article and Find Full Text PDF

Optimized mammalian expression system for the ubiquitin E3 ligase E6AP/UBE3A.

Protein Expr Purif

January 2025

Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA. Electronic address:

E6AP/UBE3A is the founding member of the HECT (Homologous to the E6-AP Carboxyl Terminus) ubiquitin E3 ligase family, which add ubiquitin post-translationally to protein substrates. E6AP has been structurally defined in complex with human papillomavirus (HPV) oncoprotein E6 and its gain-of-function substrate tumor suppressor p53; however, there is currently no report of E6AP being expressed and purified from mammalian cells, as studies to date have isolated E6AP from E. coli or insect cells.

View Article and Find Full Text PDF

The expansion of urban settlements over native environments may expose biodiversity to a host of emerging contaminants, with unintended ecological effects. This study evaluated patterns of contamination of streamwater by antidepressants in the Upper Tietê River Basin, a watershed of high social, economic and environmental relevance for comprising both the largest urban settlement in South America (the Metropolitan Region of São Paulo) and remnants of a globally important biodiversity hotspot (the Atlantic Rainforest). We sampled 53 third-order streams draining catchments regularly distributed across a gradient in urban cover.

View Article and Find Full Text PDF

Generation of a PDK-1 knockout human embryonic stem cell line by CRISPR/(WAe009-A-2K) Cas9 editing.

Stem Cell Res

December 2024

Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing 100029, China. Electronic address:

Pyruvate Dehydrogenase Kinase1 (PDK1) belongs to the family of kinases, regulates diverse metabolic processes. PDK1 is a susceptibility locus for heart failure via thinning of ventricle walls, and enlarged atria and ventricles. We successfully developed a PDK1 knockout (PDK1/) human embryonic stem cell (hESC) line using an episomal vector-based CRISPR/Cas9 system explore the role of PDK in human heart development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!