-Methylmethionine (SMM) was suggested previously to participate in the metabolism of methionine (Met) in seeds. To further reveal its roles, we had previously produced transgenic Arabidopsis () RNA interference (RNAi) seeds with lower transcript expression of CYSTATHIONINE γ-SYNTHASE (), Met's main regulatory enzyme. Unexpectedly, these seeds accumulated significantly higher levels of Met compared with control seeds through an as yet unknown mechanism. Here, transcript and metabolic analyses coupled with isotope-labeled [C]SMM and [C]Met feeding experiments enabled us to reveal that SMM that was synthesized in rosette leaves of RNAi plants significantly contributed to the accumulation of Met in their seeds at late stages of development. Seed-specific repression of in RNAi seeds triggered the induction of genes operating in the SMM cycle of rosette leaves, leading to elevated transport of SMM toward the seeds, where higher reconversion rates of SMM to Met were detected. The metabolic rearrangements in RNAi seeds resulted in an altered sulfur-associated metabolism, such as lower amounts of Cys and glutathione, as well as a differential composition of glucosinolates. Together, the data propose a novel cross talk existing between seeds and rosette leaves along with mutual effects between the Asp family and SMM pathways operating in these tissues. They also shed light on the effects of higher Met levels on seed physiology and behavior.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490928 | PMC |
http://dx.doi.org/10.1104/pp.17.00579 | DOI Listing |
Front Plant Sci
January 2025
Unité en Sciences Biologiques et Biotechnologies, UMR 6286, Nantes Université, Centre National de la Recherche Scientifique (CNRS), Nantes, France.
Obligate root parasitic plants of the Orobanchaceae family exhibit an intricate germination behavior. The host-dependent germination process of these parasites has prompted extensive research into effective control methods. While the effect of biomaterials such as amino acids and microRNA-encoded peptides have been explored, the effect of double-stranded RNAs (dsRNAs) has remained unexamined during the germination process.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan.
Seed beetles are pernicious pests of leguminous seeds and are distributed globally. They cause great economic losses, particularly in developing countries. Of this genus, the cowpea weevil (Callosobruchus maculatus) is the most destructive and common species of this beetle.
View Article and Find Full Text PDFPlant Physiol
January 2025
Rothamsted Research, West Common, Harpenden, Al5 2JQ, UK.
The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2024
National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India. Electronic address:
Plant J
December 2024
Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Cotton seed development and fiber elongation are the inseparable and overlapped development processes requiring the continuous supply of sucrose as the direct carbon source. However, little is known about the molecular mechanism of how sucrose is transported from the source tissues (leaves) into growing cotton seeds. Here, we identify the function of a sucrose transporter gene, Sugars Will Eventually be Exported Transporter 10, GhSWEET10 in cotton seed development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!