Background/aims: Transforming growth factor-β1 (TGF-β1) plays important roles in penile corporal fibrosis and veno-occlusive dysfunction (CVOD). Angiotensin II (Ang II) is critically involved in erectile dysfunction, and blocking of Ang II is more important than inhibition of TGF-β in non-penile tissue fibrosis. However, the role of Ang II in corporal fbrosis and CVOD in a diabetic condition has not been investigated.

Methods: Diabetic rats were treated with sildenafil or losartan (an Ang II antagonist) alone or in combination. Intracavernosal pressure, dynamic infusion cavernosometry, and histological and molecular alterations of the corpus cavernosum were examined.

Results: Diabetic rats exhibited decreases in erectile response, severe CVOD, apoptosis, fibrosis, and activation of the TGF-β1 pathway. Treatment with sildenafil had a modest effect on erectile response and an insignificant suppressive effect on CVOD, apoptosis, fibrosis, and the TGF-β1 pathway. Although losartan greatly improved the histological and molecular changes and CVOD as compared with sildenafil, its effect on erectile response was low. The combination of sildenafil and losartan had superior effects on these parameters than did either compound alone.

Conclusion: Ang II activation may be involved in apoptosis and fibrosis of the corpus cavernosum through Smad and non-Smad pathways, resulting in CVOD and ED. The low efficacy of sildenafil in a diabetic ED rat model was at least partly due to its inadequate effects on apoptosis, fibrosis, and CVOD.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000477388DOI Listing

Publication Analysis

Top Keywords

apoptosis fibrosis
20
corpus cavernosum
12
diabetic rats
12
erectile response
12
fibrosis corpus
8
veno-occlusive dysfunction
8
sildenafil losartan
8
histological molecular
8
cvod apoptosis
8
tgf-β1 pathway
8

Similar Publications

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma.

View Article and Find Full Text PDF

Background: Renal fibrosis is crucial in the progression of chronic kidney disease (CKD) to end-stage renal failure. Geniposide, an iridoid glycoside, has shown therapeutic potential in acute kidney injury, diabetic nephropathy, and atherosclerosis. The aim of this study was to investigate the role of geniposide in renal fibrosis and its underlying mechanisms.

View Article and Find Full Text PDF

A number of studies demonstrate the therapeutic effectiveness of Radix Bupleuri (RB) and Hedysarum Multijugum Maxim (HMM) in treating liver fibrosis, but the exact molecular mechanisms remain unclear. This study aims to explore the mechanism of RB-HMM drug pairs in treating liver fibrosis by using network pharmacology, bioinformatics, molecular docking, molecular dynamics simulation technology and in vitro experiments. Totally, 155 intersection targets between RB-HMM and liver fibrosis were identified.

View Article and Find Full Text PDF

Objective: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that significantly impairs muscle regeneration following injuries, contributing to numerous complications and reduced quality of life. There is an urgent need for therapeutic strategies that can enhance muscle regeneration and alleviate these pathological mechanisms. In this study, we evaluate the therapeutic efficacy of W-GA nanodots, which are composed of gallic acid (GA) and tungstate (W6+), on muscle regeneration in type 2 diabetes mellitus (T2D)-induced muscle injury, with a focus on their anti-inflammatory and antioxidative effects.

View Article and Find Full Text PDF

Assembly of ceria-Nrf2 nanoparticles as macrophage-targeting ROS scavengers protects against myocardial infarction.

Front Pharmacol

January 2025

The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.

Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!