Objectives: Perampanel, a selective, noncompetitive AMPA receptor antagonist, is indicated as adjunctive therapy for the treatment of partial seizures with or without secondarily generalized seizures and primary generalized tonic-clonic seizures in patients with epilepsy aged 12years and older. In vitro studies and Phase I trials indicate that perampanel is metabolized almost exclusively by CYP3A, with an elimination half-life (t) averaging approximately 105h. Understanding of pharmacokinetic (PK) interactions-enzyme inhibition or induction-and anticipating their occurrence are important for management of patients with epilepsy. Here we report PK results from a Phase I drug-drug interaction (DDI) study (Study 005) combining perampanel with the CYP3A inhibitor ketoconazole, as well as supplementary in silico predictions further exploring this interaction.
Methods: A Phase I, randomized, open-label, two-period, two-treatment, two-way crossover study was conducted in 26 healthy adult male volunteers. Subjects were randomized to 1 of 2 treatment sequences. In one period, subjects received a single 1-mg fasting dose of perampanel (Day1); in the other period, subjects received ketoconazole 400mg once daily for 10days with a single 1-mg perampanel dose while fasting (Day3). Blood samples were drawn at multiple time points up to 288h after the perampanel dose. Pharmacokinetic parameters of perampanel were calculated by noncompartmental analysis, and safety was recorded. An integrated, physiologically based PK model built in Simcyp provided additional insight into this interaction. Drug-drug interaction intensity was measured by the ratio of systemic exposure (area under plasma concentration-time curve [AUC]) of perampanel in the presence or absence of concomitant ketoconazole.
Results: Single oral doses of 1mg perampanel and once-daily oral doses of ketoconazole 400mg were safe and well tolerated. Maximum perampanel plasma concentration (C) and time to C showed no apparent differences when perampanel was administered alone versus with ketoconazole. Ketoconazole co-administration resulted in an approximate 20% increase in perampanel AUC (P<0.001). This increase, although statistically significant, was a<2.0-fold AUC change and alone would suggest a modest effect of ketoconazole. To further explore these results, DDI simulations were performed to query the findings and test additional study conditions. Using the actual trial conditions of Study 005, the simulations also predicted an AUC ratio increase <2-fold, providing verification of the simulation assumptions and the modest effect of ketoconazole for 10days. Simulations further suggested that an interaction effect of ketoconazole on perampanel exposure (>2-fold) of potential clinical significance could be predicted when using larger doses of ketoconazole (e.g., 200mg every 6h) coadministered for a greater time period (e.g., 30days), with AUC ratio as high as 3.36. Additionally, simulations suggested that a significant interaction with co-administration of perampanel and an inhibitor more potent than ketoconazole (such as itraconazole) could not be ruled out.
Conclusions: Selecting an appropriate study design is critical to fully characterize the PK interaction for drugs such as perampanel that have a long t. Although a negligible effect on perampanel PK was observed following co-administration of ketoconazole 400mg/day for 10days, this is likely due in part to the relatively brief co-administration period of ketoconazole and perampanel (<3 times the t of perampanel). While short-term administration of a CYP3A inhibitor may not significantly increase perampanel exposure, such increases may be expected following chronic and larger dosing or with a more potent inhibitor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.eplepsyres.2017.04.018 | DOI Listing |
Epilepsy Res
December 2024
Korea University, Guro Hospital, Seoul, Republic of Korea.
Objective: FREEDOM (Study 342; NCT03201900) assessed the long-term treatment effect of perampanel monotherapy in adolescent and adult patients (12-74 years of age) with untreated focal-onset seizures (FOS), with or without focal to bilateral tonic-clonic seizures (FBTCS).
Methods: In the Core Study, after a 4-week Pretreatment Phase, perampanel was up-titrated to 4 mg/day during a 6-week Titration Period followed by a 26-week Maintenance Period. Patients experiencing seizure(s) during the 4-mg/day Maintenance Period could have perampanel up-titrated to 8 mg/day over 4 weeks then could enter the 26-week 8-mg/day Maintenance Period.
Drugs Real World Outcomes
January 2025
Kabul University of Medical Sciences, Kabul, Afghanistan.
Anti-seizure medications (ASMs) are specific types of anticonvulsants used to treat epileptic seizures. However, several studies have shown an association between ASMs and an increased risk of hematological disorders, such as thrombocytopenia, aplastic anemia, and platelet function disorders leading to prolonged bleeding times. This review explores the existing literature on this topic, investigating a wide variety of ASMs, ranging from first-generation medications to newer ones.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University Plovdiv, 4002 Plovdiv, Bulgaria.
Epilepsy is a common brain function disorder. The present study aims to evaluate the long-term effect of perampanel (PRM) and lacosamide (LCM), administered singly in a high-dose or in a low-dose combination of both, on comorbid anxiety, cognitive impairment, BDNF, and Cyclin D1 hippocampal expression in an experimental model of temporal lobe epilepsy with lithium-pilocarpine. PRM (3 mg/kg, p.
View Article and Find Full Text PDFJ Epilepsy Res
December 2024
Department of Neurology, Comprehensive Epilepsy Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Lance Adams syndrome (LAS) is characterized by chronic action or intention myoclonus resulting from cerebral hypoxia. Perampanel, a non-competitive antagonist of aamino-3-hydroxy-5methyl-4 isooxazoleproprionic acid glutamate receptor, has demonstrated some efficacy in myoclonic epilepsy and other types of myoclonus. We report significant benefit in a patient with LAS treated with add on perampanel and provide a review of the relevant literature.
View Article and Find Full Text PDFJ Epilepsy Res
December 2024
Neurological Surgery Unit, Department of Surgery, Phramongkutklao Hospital, Bangkok, Thailand.
Background And Purpose: Epilepsy increases poor outcomes in patients with post-traumatic brain injury and brain tumor-related epilepsy, for whom early seizure control is essential. Perampanel (PER) was a known third-generation antiepileptic drug for treatment all types of seizures. The objective of the study is to compare clinical outcomes and safety of PER administration as monotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!