Background: Chronic obstructive pulmonary disease (COPD) is characterised by airflow obstruction due to an abnormal inflammatory response of the lungs to noxious particles or gases, for example, cigarette smoke. The pattern of care for people with moderate to very severe COPD often involves regular lengthy hospital admissions, which result in high healthcare costs and an undesirable effect on quality of life. Research over the past decade has focused on innovative methods for developing enabling and assistive technologies that facilitate patient self-management.
Objectives: To evaluate the effectiveness of interventions delivered by computer and by mobile technology versus face-to-face or hard copy/digital documentary-delivered interventions, or both, in facilitating, supporting, and sustaining self-management among people with COPD.
Search Methods: In November 2016, we searched the Cochrane Airways Group Specialised Register (CAGR), which contains trial reports identified through systematic searches of bibliographic databases including the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL, AMED, and PsycINFO, and we handsearched respiratory journals and meeting abstracts.
Selection Criteria: We included randomised controlled trials that measured effects of remote and Web 2.0-based interventions defined as technologies including personal computers (PCs) and applications (apps) for mobile technology, such as iPad, Android tablets, smart phones, and Skype, on behavioural change towards self-management of COPD. Comparator interventions included face-to-face and/or hard copy/digital documentary educational/self-management support.
Data Collection And Analysis: Two review authors (CMcC and MMcC) independently screened titles, abstracts, and full-text study reports for inclusion. Two review authors (CMcC and AMB) independently assessed study quality and extracted data. We expressed continuous data as mean differences (MDs) and standardised mean differences (SMDs) for studies using different outcome measurement scales.
Main Results: We included in our review three studies (Moy 2015; Tabak 2013; Voncken-Brewster 2015) with a total of 1580 randomised participants. From Voncken-Brewster 2015, we included the subgroup of individuals with a diagnosis of COPD (284 participants) and excluded those at risk of COPD who had not received a diagnosis (1023 participants). As a result, the total population available for analysis included 557 participants; 319 received smart technology to support self-management and 238 received face-to-face verbal/written or digital information and education about self-management. The average age of participants was 64 years. We included more men than women because the sample from one of the studies consisted of war veterans, most of whom were men. These studies measured five of our nine defined outcomes. None of these studies included outcomes such as self-efficacy, cost-effectiveness, functional capacity, lung function, or anxiety and depression.All three studies included our primary outcome - health-related quality of life (HRQoL) as measured by the Clinical COPD Questionnaire (CCQ) or St George's Respiratory Questionnaire (SGRQ). One study reported our other primary outcomes - hospital admissions and acute exacerbations. Two studies included our secondary outcome of physical activity as measured by daily step counts. One study addressed smoking by providing a narrative analysis. Only one study reported adverse events and noted significant differences between groups, with 43 events noted in the intervention group and eight events in the control group (P = 0.001). For studies that measured outcomes at week four, month four, and month six, the effect of smart technology on self-management and subsequent HRQoL in terms of symptoms and health status was significantly better than when participants received face-to-face/digital and/or written support for self-management of COPD (SMD -0.22, 95% confidence interval (CI) -0.40 to -0.03; P = 0.02). The single study that reported HRQoL at 12 months described no significant between-group differences (MD 1.1, 95% CI -2.2 to 4.5; P = 0.50). Also, hospitalisations (logistic regression odds ratio (OR) 1.6, 95% CI 0.8 to 3.2; P = 0.19) and exacerbations (logistic regression OR 1.4, 95% CI 0.7 to 2.8; P = 0.33) did not differ between groups in the single study that reported these outcomes at 12 months. The activity level of people with COPD at week four, month four, and month six was significantly higher when smart technology was used than when face-to-face/digital and/or written support was provided (MD 864.06 daily steps between groups, 95% CI 369.66 to 1358.46; P = 0.0006). The only study that measured activity levels at 12 months reported no significant differences between groups (mean -108, 95% CI -720 to 505; P = 0.73). Participant engagement in this study was not sustained between four and 12 months. The only study that included smoking cessation found no significant treatment effect (OR 1.06, 95%CI 0.43 to 2.66; P = 0.895). Meta-analyses showed no significant heterogeneity between studies (Chi² = 0.39, P = 0.82; I² = 0% and Chi² = 0.01, P = 0.91; I² = 0%, respectively).
Authors' Conclusions: Although our review suggests that interventions aimed at facilitating, supporting, and sustaining self-managment in people with COPD and delivered via smart technology significantly improved HRQoL and levels of activity up to six months compared with interventions given through face-to-face/digital and/or written support, no firm conclusions can be drawn. This improvement may not be sustained over a long duration. The only included study that measured outcomes up to 12 months highlighted the need to ensure sustained engagement with the technology over time. Limited evidence suggests that using computer and mobile technology for self-management for people with COPD is not harmful and may be more beneficial for some people than for others, for example, those with an interest in using technology may derive greater benefit.The evidence, provided by three studies at high risk of bias, is of poor quality and is insufficient for advising healthcare professionals, service providers, and members of the public with COPD about the health benefits of using smart technology as an effective means of supporting, encouraging, and sustaining self-management. Further research that focuses on outcomes relevant to different stages of COPD is needed. Researchers should provide clear information on how self-management is assessed and should include longitudinal measures that allow comment on behavioural change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481891 | PMC |
http://dx.doi.org/10.1002/14651858.CD011425.pub2 | DOI Listing |
PLoS One
January 2025
European IPF/ILD Registry and Biobank (eurIPFreg/bank, eurILDreg/bank), Giessen, Germany.
Background And Aims: Predicting progression and prognosis in Interstitial Lung Diseases (ILD), especially Idiopathic Pulmonary Fibrosis (IPF) and Progressive Pulmonary Fibrosis (PPF), remains a challenge. Integrating patient-centered measurements is essential for earlier and safer detection of disease progression. Home monitoring through e-health technologies, such as spirometry and oximetry connected to smartphone applications, holds promise for early detection of ILD progression or acute exacerbations, enabling timely therapeutic interventions.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
CERN, Geneva, Switzerland.
Z boson events at the Large Hadron Collider can be selected with high purity and are sensitive to a diverse range of QCD phenomena. As a result, these events are often used to probe the nature of the strong force, improve Monte Carlo event generators, and search for deviations from standard model predictions. All previous measurements of Z boson production characterize the event properties using a small number of observables and present the results as differential cross sections in predetermined bins.
View Article and Find Full Text PDFLab Chip
January 2025
Antwerp Engineering, Photoelectrochemistry and Sensing (A-PECS), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
Wearable microfluidic sweat sensors could play a major role in the future of monitoring health and wellbeing. Sweat contains biomarkers to monitor health and hydration status, and it can provide information on drug intake, making it an interesting non-invasive alternative to blood. However, sweat is not created in excess, and this requires smart sweat collection strategies to handle small volumes.
View Article and Find Full Text PDFMethodsX
June 2025
School of Social Sciences and Languages, Vellore Institute of Technology, Chennai, India.
Understanding the relationship between Learned Helplessness (LH) and Psychological Capital (PsyCap) is essential for developing effective interventions for Indigenous adolescents. This study explored the role of PsyCap as a mediator in the link between LH and Psychological Well-Being (PWB). Total of 173 Indigenous adolescents (85 boys and 88 girls) from sixth to eleventh grade at government residential schools.
View Article and Find Full Text PDFIndian J Occup Environ Med
December 2024
Department of Statistics, All India Institute of Medical Sciences, New Delhi, India.
Background: There are adverse effects on the health outcomes of workers whose occupation involves prolonged standing, such as lower back pain, leg pain, cardiovascular diseases, fatigue, discomfort, and pregnancy-related health outcomes. The effectiveness of massage therapy as an intervention for managing leg pain associated with prolonged standing needs to be addressed.
Aims: This study aimed to evaluate the smart dynamic fabric actuator's effectiveness in treating chronic musculoskeletal leg pain in persons with occupations involving prolonged standing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!