Chemical inhibition of epigenetic regulatory proteins BrdT and Brd4 is emerging as a promising therapeutic strategy in contraception, cancer, and heart disease. We report an easily synthesized dihydropyridopyrimidine pan-BET inhibitor scaffold, which was uncovered via a virtual screen followed by testing in a fluorescence anisotropy assay. Dihydropyridopyimidine 3 was subjected to further characterization and is highly selective for the BET family of bromodomains. Structure-activity relationship data and ligand deconstruction highlight the importance of the substitution of the uracil moiety for potency and selectivity. Compound 3 was also cocrystallized with Brd4 for determining the ligand binding pose and rationalizing subsequent structure-activity data. An additional series of dihydropyridopyrimidines was synthesized to exploit the proximity of a channel near the ZA loop of Brd4, leading to compounds with submicromolar affinity and cellular target engagement. Given these findings, novel and easily synthesized inhibitors are being introduced to the growing field of bromodomain inhibitor development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5558211PMC
http://dx.doi.org/10.1021/acs.jmedchem.6b01336DOI Listing

Publication Analysis

Top Keywords

virtual screen
8
easily synthesized
8
bet bromodomain
4
bromodomain inhibitors
4
inhibitors one-step
4
one-step synthesis
4
synthesis discovered
4
discovered virtual
4
screen chemical
4
chemical inhibition
4

Similar Publications

Introduction: Upper limb (UL) impairment is common in people with multiple sclerosis (pwMS), and functional recovery of the UL is a key rehabilitation goal. Technology-based approaches, like virtual reality (VR), are increasingly promising. While most VR environments are task-oriented, our clinical approach integrates neuroproprioceptive 'facilitation and inhibition' (NFI) principles.

View Article and Find Full Text PDF

Background: Outpatient hysteroscopy (OPH) is an important diagnostic and therapeutic intervention in gynaecology. However, the most common reason for failure is pain. Currently, there is no consensus regarding analgesia for OPH amongst the literature.

View Article and Find Full Text PDF

Identification of mitoxantrone as a potent inhibitor of CDK7/Cyclin H via structure-based virtual screening and In-Vitro validation by ADP-Glo kinase assay.

Bioorg Chem

December 2024

Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, Telangana, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Cyclin-dependent kinases, CDK7 and CDK9 play critical roles in cancer by regulating transcriptional processes essential for cell proliferation and survival. Their dysregulation leads to aberrant gene expression, promoting oncogenic pathways and contributing to tumor growth and progression. This study aimed to identify a new chemotype for CDK7/9 inhibitors using a structure-based virtual screening approach.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) imposes a significant global health and economic burden, impacting millions globally. Despite its high prevalence, public awareness and understanding of CKD remain limited, leading to delayed diagnosis and suboptimal management. Traditional patient education methods, such as 1-on-1 verbal instruction or printed brochures, are often insufficient, especially considering the shortage of nursing staff.

View Article and Find Full Text PDF

In silico drug repurposing at the cytoplasmic surface of human aquaporin 1.

PLoS One

January 2025

Genome and Structural Bioinformatics Group, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, United Kingdom.

Aquaporin 1 (AQP1) is a key channel for water transport in peritoneal dialysis. Inhibition of AQP1 could therefore impair water transport during peritoneal dialysis. It is not known whether inhibition of AQP1 occurs unintentionally due to off-target interactions of administered medications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!