Endothelial-mesenchymal transition (EndMT) is an essential mechanism in the cardiovascular system, for both cardiovascular development and cardiovascular diseases (CVDs). Recent studies indicate that runt-related transcription factor 3 (RUNX3) contributes to EndMT and endothelial cell dysfunction. However, the underlying molecular mechanism remains unknown. The present study was designed to investigate the role of RUNX3 in EndMT and endothelial cell function, and to elucidate the underlying molecular mechanism. Human cardiac microvascular endothelial cells (HCMECs) were incubated in strictly controlled hypoxic conditions (1% O2). HCMECs were cultured under normoxic conditions (21% O2), and then moved to a strictly controlled hypoxic environment (1% O2). Under this hypoxic condition, the cells were transfected with the lentiviral vector containing RUNX3 or an empty lentiviral vector for 8 h. After the cells were cultured under hypoxic conditions for 4 days, CD31 and α-smooth muscle actin colocalization were assessed by immunofluorescence microscopy. Transwell migration and tube formation assays were used to examine the migration and angiogenesis ability. RT-qPCR and western blotting were used to determine the expression of molecules involved in EndMT. Hypoxia induced the transition of HCMECs to mesenchymal cells and markedly promoted tube formation and cell migration. Transforming growth factor-β (TGF-β) and Notch signaling were activated during the hypoxia-induced EndMT of HCMECs. RUNX3 knockdown attenuated EndMT of HCMECs, promoted angiogenic phenotype, and reduced endothelial cell migration. In conclusion, our results showed that RUNX3 knockdown attenuated hypoxia-induced EndMT and reversed endothelial cell functions. RUNX3 is a common downstream target of TGF-β and Notch signaling, and may be a novel therapeutic target for treating CVD mediated by EndMT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466396PMC
http://dx.doi.org/10.3892/ijmm.2017.2998DOI Listing

Publication Analysis

Top Keywords

endothelial cell
16
human cardiac
8
cardiac microvascular
8
microvascular endothelial
8
endmt endothelial
8
underlying molecular
8
molecular mechanism
8
strictly controlled
8
controlled hypoxic
8
lentiviral vector
8

Similar Publications

Objective: To study measures of endothelial health, cardiovascular risk, and cellular aging between PCOS patients and a reproductive age normative cohort.

Design: Cross-sectional study.

Subjects: Community-based PCOS patients and a normative ovarian aging cohort as controls, aged 45 or younger at the time of evaluation.

View Article and Find Full Text PDF

UGP2, a novel target gene of TP53, inhibits endothelial cells apoptosis and atherosclerosis.

Life Sci

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:

The dysfunction of the endothelial lining in lesion-prone areas of the arterial vasculature significantly contributes to the pathobiology of atherosclerotic cardiovascular disease. Recent studies suggested that UDP-glucose pyrophosphorylase 2 (UGP2) plays a role in cell proliferation and survival. This study investigates the anti-apoptotic and anti-atherogenic effects of UGP2 both in vitro and in vivo.

View Article and Find Full Text PDF

Endothelial cell (EC)-specific CTGF/CCN2 Expression Increases EC Reprogramming and Atherosclerosis.

Matrix Biol

January 2025

Department of Surgery, Emory University, Atlanta, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA; Research Services, Atlanta VA Medical Center, Decatur, GA, USA. Electronic address:

Arterial endothelial cells (ECs) reside in a complex biomechanical environment. ECs sense and respond to wall shear stress. Low and oscillatory wall shear stress is characteristic of disturbed flow and commonly found at arterial bifurcations and around atherosclerotic plaques.

View Article and Find Full Text PDF

Longitudinal single-cell profiles of lung regeneration after viral infection reveal persistent injury-associated cell states.

Cell Stem Cell

January 2025

Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address:

Functional regeneration of the lung's gas exchange surface following injury requires the coordination of a complex series of cell behaviors within the alveolar niche. Using single-cell transcriptomics combined with lineage tracing of proliferating progenitors, we examined mouse lung regeneration after influenza injury, demonstrating an asynchronously phased response across different cellular compartments. This longitudinal atlas of injury responses has produced a catalog of transient and persistent transcriptional alterations in cells as they transit across axes of differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!