Effects of octreotide on hepatic glycogenesis in rats with high fat diet‑induced obesity.

Mol Med Rep

Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.

Published: July 2017

Reduced hepatic glycogenesis is one of the most important causes of metabolic abnormalities in non‑alcoholic fatty liver disease. Octreotide, a somatostatin analogue, has been demonstrated to promote weight loss and improve metabolic disorders in mice with high fat diet (HFD)‑induced obesity. However, whether octreotide affects hepatic glycogenesis is unknown. The aim of the present study was to verify the effects of octreotide on hepatic glycogenesis in rats with HFD‑induced obesity. Male Sprague‑Dawley rats were fed a standard diet or a HFD for 24 weeks. Obese rats from the HFD group were further divided into a HFD‑control group and an octreotide‑administered group. Rats in the latter group were injected with octreotide for 8 days. Glucose and insulin tolerance tests were performed, and the area under the curve (AUC) was calculated. Following sacrifice, their body weights and lengths, fasting plasma glucose (FPG), fasting insulin (FINS), serum triglyceride (TG), total cholesterol (TC), free fatty acid (FFA), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured. In addition, Lee's index and the homeostatic model assessment index were calculated. Hepatic TG, FFA levels and glycogen content were first determined. Hepatic steatosis in the obese rats was assessed based on hematoxylin and eosin and Oil Red O staining. Human hepatoblastoma HepG2 cells were divided into a control group, a palmitate (PA)‑treated group and a PA + octreotide‑treated group. Establishment of the in vitro fatty liver model using HepG2 cells was confirmed by Oil Red O staining. The expression of phosphorylated Akt and glycogen synthase kinase 3β (GSK3β) was detected by western blotting, and glycogen synthase (GS) mRNA levels were detected by reverse transcription‑quantitative polymerase chain reaction. Compared with the control group, the body weight, Lee's index, AUC of the intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test, levels of FPG, FINS, TG, TC, FFA, ALT and AST, and HOMA index values were significantly increased in the obese rats. The body weight, levels of FPG and FINS, and the HOMA index were significantly reduced following octreotide treatment, whereas the decrease in Lee's index, the blood levels of ALT, AST, TC, TG and FFA, and the AUC did not reach statistical significance. Hepatic TG and FFA levels were significantly increased and hepatic glycogen content was significantly decreased in rats with HFD‑induced obesity when compared with those in the control group. Octreotide intervention restored these alterations. The expression levels of phosphorylated Akt and GSK3β protein expression, as well as GS mRNA levels in the HFD group were lower when compared with those in the control group, whereas octreotide treatment reversed these reductions. The in vitro experiments demonstrated that the reduced levels of phosphorylated Akt and GSK3β protein, and GS mRNA in the PA‑treated group were significantly reversed by octreotide treatment. In conclusion, the results indicate that octreotide improved hepatic glycogenesis and decreased FPG concentration in rats with HFD‑induced obesity. These mechanisms may be associated with increased GS activity via the promotion of GSK3β phosphorylation. Therefore, octreotide may be regarded as a novel therapeutic strategy for HFD‑induced obesity and obesity‑associated metabolic disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482138PMC
http://dx.doi.org/10.3892/mmr.2017.6586DOI Listing

Publication Analysis

Top Keywords

hepatic glycogenesis
20
hfd‑induced obesity
20
control group
16
octreotide hepatic
12
rats hfd‑induced
12
obese rats
12
group
12
phosphorylated akt
12
compared control
12
octreotide treatment
12

Similar Publications

Background And Aims: Limited data link manufactured sweeteners impact on metabolic dysfunction-associated steatotic liver disease (MASLD). We aimed to evaluate the effects of manufactured sugars (L-glucose) compared to natural sugars (D-glucose) on phenotype, molecular and metabolic changes in mice models fed with either regular diet (RD) or high fat diet (HFD).

Methods: C57BL/6 mice fed 16-weeks with either RD; 70% carbohydrate or HFD; 60% fat, with or without additional glucose (Glu, at 18% w/v) to drinking tap water at weeks 8-16; of either natural (D-Glu) or manufactured (L-Glu) sugars.

View Article and Find Full Text PDF

Effects of dechlorane plus on hepatic pathology, metabolic health and gut microbiota in male mice.

Sci Total Environ

December 2024

College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China. Electronic address:

Dechlorane plus (DP), a widely used flame retardant, was added to Annex A of the Stockholm Convention on Persistent Organic Pollutants in 2023. This study aimed to investigate the effects of DP on glucose and lipid metabolism by orally exposing eight-week-old male mice to environmentally relevant concentrations of DP (0.5, 1, and 5 mg/kg/day) for six weeks.

View Article and Find Full Text PDF

Progressive liver disease and dysregulated glycogen metabolism in murine GSD IX γ2 models human disease.

Mol Genet Metab

December 2024

Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA; Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA. Electronic address:

Hepatic glycogen storage disease type IX γ2 (GSD IX γ2) is a severe, liver-specific subtype of GSD IX. While all patients with hepatic GSD IX present with similar symptoms, over 95 % of patients with GSD IX γ2 progress to liver fibrosis and cirrhosis. Despite disease severity, the long-term natural history of GSD IX γ2 liver disease progression is not known.

View Article and Find Full Text PDF

The liver plays an important role in the control of glucose homeostasis. When insulin levels are low, such as in the fasting state, gluconeogenesis and glycogenolysis are stimulated to maintain the blood glucose levels. Conversely, in the presence of increased insulin levels, such as after a meal, synthesis of glycogen and lipid occurs to maintain the blood glucose levels within normal range.

View Article and Find Full Text PDF
Article Synopsis
  • FGF19 is a hormone produced in the intestines that helps regulate bile acid synthesis and glucose metabolism in the liver, influenced by bile acids interacting with the FXR in the gut.
  • A study aimed to compare serum FGF19 levels in dogs with gallbladder mucoceles (GBMs) to healthy control dogs, using abdominal imaging and blood tests for diagnosis.
  • Results showed that dogs with GBMs had significantly lower levels of FGF19 compared to control dogs, suggesting that GBM may negatively impact bile flow and liver metabolism in these animals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!