A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer's disease. | LitMetric

Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregated amyloid beta (Aβ) in the brain. Here, we describe for the first time the development of a new, pioneering nanotechnology-based drug delivery approach for potential therapies for neurodegenerative diseases, particularly AD. We demonstrated the delivery of fluorescent carboxyl magnetic Nile Red particles (FMNPs) to the brains of normal mice using a functionalized magnetic field (FMF) composed of positive- and negative-pulsed magnetic fields generated by electromagnetic coils. The FMNPs successfully reached the brain in a few minutes and showed evidence of blood-brain barrier (BBB) crossing. Moreover, the best FMF conditions were found for inducing the FMNPs to reach the cortex and hippocampus regions. Under the same FMF conditions, dextran-coated FeO magnetic nanoparticles (MNPs) loaded with osmotin (OMNP) were transported to the brains of Aβ-treated mice. Compared with native osmotin, the OMNP potently attenuates Aβ-induced synaptic deficits, Aβ accumulation, BACE-1 expression and tau hyperphosphorylation. This magnetic drug delivery approach can be extended to preclinical and clinical use and may advance the chances of success in the treatment of neurological disorders like AD in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7nr00772hDOI Listing

Publication Analysis

Top Keywords

magnetic nanoparticles
8
alzheimer's disease
8
drug delivery
8
delivery approach
8
fmf conditions
8
osmotin omnp
8
magnetic
5
osmotin-loaded magnetic
4
nanoparticles electromagnetic
4
electromagnetic guidance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!