Adenosine triphosphate (ATP) cleavage powers packaging of a double-stranded DNA (dsDNA) molecule in a pre-assembled capsid of phages that include T3. Several observations constitute a challenge to the conventional view that the shell of the capsid is energetically inert during packaging. Here, we test this challenge by analyzing the in vitro effects of ATP on the shells of capsids generated by DNA packaging in vivo. These capsids retain incompletely packaged DNA (ipDNA) and are called ipDNA-capsids; the ipDNA-capsids are assumed to be products of premature genome maturation-cleavage. They were isolated via preparative Nycodenz buoyant density centrifugation. For some ipDNA-capsids, Nycodenz impermeability increases hydration and generates density so low that shell hyper-expansion must exist to accommodate associated water. Electron microscopy (EM) confirmed hyper-expansion and low permeability and revealed that 3.0 mM magnesium ATP (physiological concentration) causes contraction of hyper-expanded, lowpermeability ipDNA-capsids to less than mature size; 5.0 mM magnesium ATP (border of supraphysiological concentration) or more disrupts them. Additionally, excess sodium ADP reverses 3.0 mM magnesium ATP-induced contraction and re-generates hyper-expansion. The Nycodenz impermeability implies assembly perfection that suggests selection for function in DNA packaging. These findings support the above challenge and can be explained via the assumption that T3 DNA packaging includes a back-up cycle of ATP-driven capsid contraction and hyper-expansion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5454431 | PMC |
http://dx.doi.org/10.3390/v9050119 | DOI Listing |
Nucleic Acids Res
January 2025
Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
Chromatin remodeling, which involves the histone-to-protamine exchange process during spermiogenesis, is crucial for sperm nuclear condensation and male fertility. However, the key regulators and underlying molecular mechanisms involved in this process remain largely unexplored. In this study, we discovered that deficiency in the family with sequence similarity 170 member A (Fam170a) led to abnormal sperm nuclear morphology and male infertility in mice, mirroring the observation of very low Fam170a transcription levels in sperm of infertile men with teratozoospermia.
View Article and Find Full Text PDFComput Biol Med
January 2025
Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Estado de México, 54714, Mexico. Electronic address:
Bacterial resistance is a global public health problem because of the ineffectiveness of conventional antibiotics against super pathogens. To counter this situation, the search for or design of new molecules is essential to inhibit the key proteins involved in several stages of bacterial infection. One of these key proteins is DNA gyrase, which is responsible for packaging and unfolding of DNA chains during replication.
View Article and Find Full Text PDFViruses
January 2025
Biological Sciences Department, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Six novel phages belonging to the family were isolated using as a host. Phages MuffinTheCat, Badulia, DesireeRose, Bee17, SCoupsA, and LuzDeMundo were purified from environmental samples by students participating in the Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program at Alliance University, New York. The phages have linear dsDNA genomes 15,438-15,636 bp with 112-120 bp inverted terminal repeats.
View Article and Find Full Text PDFViruses
December 2024
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.
View Article and Find Full Text PDFPharmaceutics
January 2025
Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA.
RNA nanoparticles, derived from the packaging RNA three-way junction motif (pRNA-3WJ) of the bacteriophage phi29 DNA packaging motor, have been demonstrated to be thermodynamically and chemically stable, with promise as a nanodelivery system. : A previous study showed that RNA nanoparticles with antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) inhibited cell proliferation via WST-1 assay. To further investigate the antiangiogenic potential of these RNA nanoparticles, a modified three-dimensional (3D) spheroid sprouting assay model of human umbilical vein endothelial cells was utilized in the present study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!