This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size μ and filter order ) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR). We conducted experiments using signals supplied by the latest version of our LabVIEW-Based Multi-Channel Non-Invasive Abdominal Maternal-Fetal Electrocardiogram Signal Generator, which provides the flexibility and capability of modeling the principal distribution of maternal/fetal ECGs in the human body. Our novel algorithm enabled us to find the optimal settings of the adaptive filters based on maternal surface ECG electrode placements. The experimental results further confirmed the theoretical assumption that the optimal settings of these adaptive filters are dependent on the ECG electrode positions on the maternal body, and therefore, we were able to achieve far better results than without the use of optimization. These improvements in turn could lead to a more accurate detection of fetal hypoxia. Consequently, our approach could offer the potential to be used in clinical practice to establish recommendations for standard electrode placement and find the optimal adaptive filter settings for extracting high quality fetal ECG signals for further processing. Ultimately, diagnostic-grade fetal ECG signals would ensure the reliable detection of fetal hypoxia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470900PMC
http://dx.doi.org/10.3390/s17051154DOI Listing

Publication Analysis

Top Keywords

ecg electrode
16
adaptive filters
16
fetal monitoring
8
maternal surface
8
surface ecg
8
adaptive filter
8
control parameters
8
lms rls
8
electrode positions
8
positions maternal
8

Similar Publications

Long-term electrocardiogram (ECG) monitoring is crucial for detecting and diagnosing cardiovascular diseases (CVDs). Monitoring cardiac health and activities using efficient, noninvasive, and cost-effective techniques such as ECG can be vital for the early detection of different CVDs. Wet electrode-based traditional ECG techniques come with unavoidable limitations of the altered quality of ECG signals caused by gel volatilization and unwanted noise followed by dermatitis.

View Article and Find Full Text PDF

Background: Brugada syndrome (BrS) is an inherited channelopathy characterized by right precordial ST-segment elevation. This study investigates the clinical and genetic characteristics of children with BrS in Hong Kong.

Methods: A retrospective review was conducted at the only tertiary pediatric cardiology center in Hong Kong from 2002 to 2022, including all pediatric BrS patients under 18 years old.

View Article and Find Full Text PDF

Interoceptive Brain Processing Influences Moral Decision Making.

Hum Brain Mapp

December 2024

Graduate School of Information Science and Technology, Osaka University, Osaka, Japan.

Not harming others is widely regarded as a fundamental tenet of human morality. Harm aversion based on the consequences of an action is called utilitarianism while focusing on the action itself is associated with deontology. This study investigated how interoceptive processing affects the neural processing of utilitarian and deontological moral decision-making.

View Article and Find Full Text PDF

Introduction: cardiac pacing is the only lifesaving procedure which is effective for major cardiac conduction disorders. In sub-Saharan Africa, few pacemakers are implanted, compared to Western countries. This study aimed to describe the indications for cardiac pacing in four hospitals in Senegal, to evaluate its practical modalities, to identify pacemaker's complications and their predisposing factors and to evaluate the main challenges for cardiac pacing in Senegal.

View Article and Find Full Text PDF

BACKGROUND Second-degree atrioventricular (AV) block is a frequently encountered conduction abnormality on surface electrocardiogram (ECG). However, it does not always imply a block at the AV nodal level. In rare cases, this block can occur below the bundle of His, within the infra-Hisian region of the His-Purkinje system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!