Sonochemical Synthesis of a Zinc Oxide Core-Shell Nanorod Radial p-n Homojunction Ultraviolet Photodetector.

ACS Appl Mater Interfaces

INSYST Laboratory, Electrical and Computer Engineering, and ‡Advance Ceramic Group, Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States.

Published: June 2017

We report for the first time on the growth of a homogeneous radial p-n junction in the ZnO core-shell configuration with a p-doped ZnO nanoshell structure grown around a high-quality unintentionally n-doped ZnO nanorod using sonochemistry. The simultaneous decomposition of phosphorous (P), zinc (Zn), and oxygen (O) from their respective precursors during sonication allows for the successful incorporation of P atoms into the ZnO lattice. The as-formed p-n junction shows a rectifying current-voltage characteristic that is consistent with a p-n junction with a threshold voltage of 1.3 V and an ideality factor of 33. The concentration of doping was estimated to be N = 6.7 × 10 cm on the p side from the capacitance-voltage measurements. The fabricated radial p-n junction demonstrated a record optical responsivity of 9.64 A/W and a noise equivalent power of 0.573 pW/√Hz under ultraviolet illumination, which is the highest for ZnO p-n junction devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b02634DOI Listing

Publication Analysis

Top Keywords

p-n junction
20
radial p-n
12
p-n
6
junction
5
zno
5
sonochemical synthesis
4
synthesis zinc
4
zinc oxide
4
oxide core-shell
4
core-shell nanorod
4

Similar Publications

Recently, photo-assisted electrocatalysis as an emerging catalytic approach that combines the technologies of photocatalysis and electrocatalysis has attracted great interest among researchers. Under this circumstance, the NiFe-LDH compounded with PbS based (PbS@NFHS) heterojunction with both photoactive and electrocatalytic properties was constructed for the first time through an ambient etching route and a subsequent low-temperature hydrothermal method. The as-prepared catalyst displayed a novel hierarchical 3D open structure based on nanosheets, which offered numerous electrochemically active sites, facilitated the swift diffusion of ions and enhanced both electrical conductivity and catalytic stability, thus significantly improving the catalytic performance.

View Article and Find Full Text PDF

Anomalous photovoltaics in Janus MoSSe monolayers.

Nat Commun

January 2025

International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing, China.

The anomalous photovoltaic effect (APE) in polar crystals is a promising avenue for overcoming the energy conversion efficiency limits of conventional photoelectric devices utilizing p-n junction architectures. To facilitate effective photocarrier separation and enhance the APE, polar materials need to be thinned down to maximize the depolarization field. Here, we demonstrate Janus MoSSe monolayers (~0.

View Article and Find Full Text PDF

CuO has attracted significant attention as a potential photocatalyst for CO reduction. However, its practical use is limited by rapid charge recombination, insufficient catalytic sites, and poor stability. In this study, we report a facile synthesis of CuO@BiOCl core-shell hybrids with a well-defined shape of CuO and a two-dimensional nanosheet structure of BiOCl.

View Article and Find Full Text PDF

Hardware implementation of reconfigurable and nonvolatile photoresponsivity is essential for advancing in-sensor computing for machine vision applications. However, existing reconfigurable photoresponsivity essentially depends on the photovoltaic effect of p-n junctions, which photoelectric efficiency is constrained by Shockley-Queisser limit and hinders the achievement of high-performance nonvolatile photoresponsivity. Here, we employ bulk photovoltaic effect of rhombohedral (3R) stacked/interlayer sliding tungsten disulfide (WS) to surpass this limit and realize highly reconfigurable, nonvolatile photoresponsivity with a retinomorphic photovoltaic device.

View Article and Find Full Text PDF

BiWO@CuO-GO bio-heterojunction spray for accelerating chronic diabetic wound repairment with bilaterally enhanced sono-catalysis and glycolytic inhibition antisepsis.

Biomaterials

December 2024

Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China. Electronic address:

Chronic diabetic wound poses a pressing global healthcare challenge, necessitating an approach to address issues such as pathogenic bacteria elimination, blood sugar regulation, and angiogenesis stimulation. Herein, we engineered a BiWO@CuO-GOx bio-heterojunction (BWCG bio-HJ) with exceptional cascade catalytic performance and impressive sonosensitivity to remodel the wound microenvironment and expedite the diabetic wound healing. Specifically, the Z-scheme junctions of BiWO@CuO significantly augmented carrier separation dynamics, leading to the highly efficient generation of reactive oxygen species (ROS) upon US irradiations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!