A device, with MEMS sensors at its core, has been fabricated and tested for measuring low fluid pressure and slow flow rates. The motivation was to measure clinically relevant ranges of slow-moving fluids in living systems, such as the cerebrospinal fluid in the brain. For potential clinical utility, the device can be read transcutaneously by inductive coupling to MEMS capacitive sensors in circuits with resonance frequencies in the MHz range. Signal shifts for flow rates in the range of 0-42 mL/h and differential pressure levels between 0.1 and 2 kPa have been measured, because the sensitivity in the capacitance gap measurement is about 1 Å. The sensors have been used successfully to monitor simulated cerebrospinal fluid dynamics. The device does not utilize any internal power, since it is powered externally via the inductive coupling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438090PMC
http://dx.doi.org/10.1016/j.sna.2016.10.030DOI Listing

Publication Analysis

Top Keywords

flow rates
8
cerebrospinal fluid
8
inductive coupling
8
angstrom-sensitive differential
4
differential mems
4
mems capacitor
4
capacitor monitoring
4
monitoring milliliter
4
milliliter dynamics
4
dynamics fluids
4

Similar Publications

The incidence of cervical cancer continues to rise in underdeveloped regions due to low human papillomavirus (HPV) vaccination rates and inadequate screening systems. To achieve convenient, rapid, and accurate detection of HPV, we developed a three-wire lateral flow strip assay system based on dual-OR logic gates for rapid and simultaneous detection of HPV subtypes 16 and 18 in a single test. The system combines three-branch-catalytic hairpin assembly (TCHA)-mediated signal amplification with simple OR logic gate-based signal output to improve detection rates while enabling HPV 16/18 subtype identification.

View Article and Find Full Text PDF

Risk quantification based Adaptive Cruise control and its application in approaching behavior at signalized intersections.

Accid Anal Prev

January 2025

School of Transportation, Southeast University, Nanjing, Jiangsu Province 211189, PR China; Institute on Internet of Mobility, Southeast University and University of Wisconsin-Madison, Southeast University, Nanjing, Jiangsu Province 211189, PR China.

Traffic signals, while reducing conflicts within intersections, often lead to stop-and-go behaviors in approaching vehicles, negatively impacting traffic flow in terms of safety, efficiency, and fuel consumption. Aimed at minimizing the traffic oscillations caused by traffic signals through Connected and Autonomous Vehicles (CAVs) and meeting real-time operational needs, this paper proposes a Risk-Based Adaptive Cruise Control (RACC). RACC designs the constraints of approaching a signalized intersection as expected risks, enabling compliance with all constraints while being adaptable to basic road scenarios.

View Article and Find Full Text PDF

Precise morphology control of all-organic core-shell droplets for synthesis of microencapsulated phase change materials through AC electric fields.

J Colloid Interface Sci

January 2025

National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China. Electronic address:

Hypothesis: Complex emulsions usually consist of aqueous phases, like oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w), serving foundational roles in colloid science. Oil-in-oil-oil (o/o/o) emulsions offer new avenues for non-aqueous reagents but face challenges in balancing the forces between multiple organic phases.

Experiments: In this work, we generate o/o/o emulsions by integrating an AC electric field with a double cross-junction microchannel.

View Article and Find Full Text PDF

Isolation of Human BAMBIhighMFGE8high Umbilical Cord-Derived Mesenchymal Stromal Cells.

J Vis Exp

January 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University;

Umbilical cord-derived mesenchymal stromal/stem cells (UC-MSCs) present low immunogenicity and potent immunomodulatory effects for treating various diseases. Human UC-MSCs are a heterogeneous population consisting of three main subpopulations with different cell shapes, proliferation rates, differentiation abilities, and immune regulatory functions. Previously, BAMBIMFGE8 UC-MSCs, the first subgroup successfully isolated from UC-MSCs were found to fail to alleviate lupus nephritis.

View Article and Find Full Text PDF

Introduction: Breast surgeries are classified as clean procedures associated with a lower risk of post-operative infections; however, the reported infection rates post-breast surgeries are still significantly high. Surgical site infections (SSIs) are indeed one of the most common and serious complications following breast surgery.

Methodology: A retrospective study assessed the rate of SSIs post-breast reconstructive surgery after the implementation of the infection control protocol at James Cook University Hospital and Friarage Hospital from December 2022 to June 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!