A classic problem in psychology is understanding how the brain creates a stable and accurate representation of space for perception and action despite a constantly moving eye. Two mechanisms have been proposed to solve this problem: Herman von Helmholtz's idea that the brain uses a corollary discharge of the motor command that moves the eye to adjust the visual representation, and Sir Charles Sherrington's idea that the brain measures eye position to calculate a spatial representation. Here, we discuss the cognitive, neuropsychological, and physiological mechanisms that support each of these ideas. We propose that both are correct: A rapid corollary discharge signal remaps the visual representation before an impending saccade, computing accurate movement vectors; and an oculomotor proprioceptive signal enables the brain to construct a more accurate craniotopic representation of space that develops slowly after the saccade.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691365 | PMC |
http://dx.doi.org/10.1146/annurev-vision-082114-035407 | DOI Listing |
Vision Res
January 2025
Department of Psychology, University of Nevada, Reno, NV 89557, United States.
A neural theory of human lightness computation is described and computer-simulated. The theory proposes that lightness is derived from transient ON and OFF cell responses in the early visual pathways that have different characteristic neural gains and that are generated by fixational eye movements (FEMs) as the eyes transit luminance edges in the image. The ON and OFF responses are combined with corollary discharge signals that encode the eye movement direction to create directionally selective ON and OFF responses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Neurology Department, New York University, New York, NY 10016.
When we vocalize, our brain distinguishes self-generated sounds from external ones. A corollary discharge signal supports this function in animals; however, in humans, its exact origin and temporal dynamics remain unknown. We report electrocorticographic recordings in neurosurgical patients and a connectivity analysis framework based on Granger causality that reveals major neural communications.
View Article and Find Full Text PDFJ Neurophysiol
January 2025
Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
We normally perceive a stable visual environment despite eye movements. To achieve such stability, visual processing integrates information across a given saccade, and laboratory hallmarks of such integration are robustly observed by presenting brief perisaccadic visual probes. In one classic phenomenon, probe locations are grossly mislocalized.
View Article and Find Full Text PDFWe perceive a stable, continuous world despite drastic changes of retinal images across saccades. However, while objects in daily life appear stable across saccades, stimuli around saccades can be grossly mislocalized. We address this puzzle with our recently proposed circuit model for perisaccadic receptive-field (RF) remapping in LIP and FEF.
View Article and Find Full Text PDFPLoS Biol
October 2024
NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!