A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tutorial on Biostatistics: Statistical Analysis for Correlated Binary Eye Data. | LitMetric

Tutorial on Biostatistics: Statistical Analysis for Correlated Binary Eye Data.

Ophthalmic Epidemiol

b Division of Preventive Medicine and the Channing Lab, Department of Medicine , Brigham and Women's Hospital, Boston , MA , USA.

Published: February 2018

Purpose: To describe and demonstrate methods for analyzing correlated binary eye data.

Methods: We describe non-model based (McNemar's test, Cochran-Mantel-Haenszel test) and model-based methods (generalized linear mixed effects model, marginal model) for analyses involving both eyes. These methods were applied to: (1) CAPT (Complications of Age-related Macular Degeneration Prevention Trial) where one eye was treated and the other observed (paired design); (2) ETROP (Early Treatment for Retinopathy of Prematurity) where bilaterally affected infants had one eye treated conventionally and the other treated early and unilaterally affected infants had treatment assigned randomly; and (3) AREDS (Age-Related Eye Disease Study) where treatment was systemic and outcome was eye-specific (both eyes in the same treatment group).

Results: In the CAPT (n = 80), treatment group (30% vision loss in treated vs. 44% in observed eyes) was not statistically significant (p = 0.07) when inter-eye correlation was ignored, but was significant (p = 0.01) with McNemar's test and the marginal model. Using standard logistic regression for unfavorable vision in ETROP, standard errors and p-values were larger for person-level covariates and were smaller for ocular covariates than using models accounting for inter-eye correlation. For risk factors of geographic atrophy in AREDS, two-eye analyses accounting for inter-eye correlation yielded more power than one-eye analyses and provided larger standard errors and p-values than invalid two-eye analyses ignoring inter-eye correlation.

Conclusion: Ignoring inter-eye correlation can lead to larger p-values for paired designs and smaller p-values when both eyes are in the same group. Marginal models or mixed effects models using the eye as the unit of analysis provide valid inference.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5986179PMC
http://dx.doi.org/10.1080/09286586.2017.1320413DOI Listing

Publication Analysis

Top Keywords

inter-eye correlation
16
correlated binary
8
binary eye
8
mcnemar's test
8
mixed effects
8
marginal model
8
eye treated
8
standard errors
8
errors p-values
8
accounting inter-eye
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!