Multifunctional PLLA-ceramic fiber membranes for bone regeneration applications.

J Colloid Interface Sci

School of Mechanical, Materials, Mechatronics and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; ARC Center of Excellence for Electromaterials Science, University of Wollongong, 2522 NSW, Australia. Electronic address:

Published: October 2017

A novel method to process electrospun poly(l-lactic acid) (PLLA) membranes incorporating glass reinforced hydroxyapatite granules (gHA) interspacially between the polymeric fibers is reported, thus increasing the surface area for cellular interactions. gHA granules (≤150μm) electrospun together with the polymer solution, lead to an average fiber diameter of 550±150nm for pristine PLLA and 440±170nm for the composite samples. An increase of the overall porosity was observed, from 79±3% for the PLLA up to 88±5% for the hybrid samples, keeping material's wettability and mechanical properties. Bone-bonding ability showed that both samples induced HA crystal nucleation, but with a distinct pattern of mineral deposition. gHA microcomposite allows a better F-actin cytoskeleton organization during the initial adhesion and spreading, favoring cell-fibers and cell-to-cell interactions and enhanced alkaline phosphatase activity, making them potential candidates for bone healing strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2017.05.032DOI Listing

Publication Analysis

Top Keywords

multifunctional plla-ceramic
4
plla-ceramic fiber
4
fiber membranes
4
membranes bone
4
bone regeneration
4
regeneration applications
4
applications novel
4
novel method
4
method process
4
process electrospun
4

Similar Publications

Multifunctional PLLA-ceramic fiber membranes for bone regeneration applications.

J Colloid Interface Sci

October 2017

School of Mechanical, Materials, Mechatronics and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia; ARC Center of Excellence for Electromaterials Science, University of Wollongong, 2522 NSW, Australia. Electronic address:

A novel method to process electrospun poly(l-lactic acid) (PLLA) membranes incorporating glass reinforced hydroxyapatite granules (gHA) interspacially between the polymeric fibers is reported, thus increasing the surface area for cellular interactions. gHA granules (≤150μm) electrospun together with the polymer solution, lead to an average fiber diameter of 550±150nm for pristine PLLA and 440±170nm for the composite samples. An increase of the overall porosity was observed, from 79±3% for the PLLA up to 88±5% for the hybrid samples, keeping material's wettability and mechanical properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!