AI Article Synopsis

  • Base composition varies significantly in plant genomes, especially at third codon positions, leading to biased synonymous codon usage.
  • The causes of this variation are debated, with potential contributors being mutational bias, selection, and GC-biased gene conversion (gBGC).
  • Research indicates that gBGC is a strong influence on base composition variation in angiosperms, suggesting its importance in genetic studies of plant species, particularly those with high GC content.

Article Abstract

Base composition is highly variable among and within plant genomes, especially at third codon positions, ranging from GC-poor and homogeneous species to GC-rich and highly heterogeneous ones (particularly Monocots). Consequently, synonymous codon usage is biased in most species, even when base composition is relatively homogeneous. The causes of these variations are still under debate, with three main forces being possibly involved: mutational bias, selection and GC-biased gene conversion (gBGC). So far, both selection and gBGC have been detected in some species but how their relative strength varies among and within species remains unclear. Population genetics approaches allow to jointly estimating the intensity of selection, gBGC and mutational bias. We extended a recently developed method and applied it to a large population genomic dataset based on transcriptome sequencing of 11 angiosperm species spread across the phylogeny. We found that at synonymous positions, base composition is far from mutation-drift equilibrium in most genomes and that gBGC is a widespread and stronger process than selection. gBGC could strongly contribute to base composition variation among plant species, implying that it should be taken into account in plant genome analyses, especially for GC-rich ones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460877PMC
http://dx.doi.org/10.1371/journal.pgen.1006799DOI Listing

Publication Analysis

Top Keywords

base composition
16
selection gbgc
12
plant genomes
8
mutational bias
8
species
6
gbgc
5
evolutionary forces
4
forces synonymous
4
synonymous variations
4
plant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!