High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells.

ACS Nano

Cell-Bionomics Research Unit, Innovative Integrated Bio-Research Core, Institute for Frontier Science Initiative, ‡Bio-AFM Frontier Research Center, §Division of Natural System, School of Natural Science and Technology, and ∥Division of Translational and Clinical Oncology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.

Published: June 2017

Nuclear pore complexes (NPCs) are the sole turnstile implanted in the nuclear envelope (NE), acting as a central nanoregulator of transport between the cytosol and the nucleus. NPCs consist of ∼30 proteins, termed nucleoporins. About one-third of nucleoporins harbor natively unstructured, intrinsically disordered phenylalanine-glycine strings (FG-Nups), which engage in transport selectivity. Because the barriers insert deeply in the NPC, they are nearly inaccessible. Several in vitro barrier models have been proposed; however, the dynamic FG-Nups protein molecules themselves are imperceptible in vivo. We show here that high-speed atomic force microscopy (HS-AFM) can be used to directly visualize nanotopographical changes of the nuclear pore inner channel in colorectal cancer (CRC) cells. Furthermore, using MLN8237/alisertib, an apoptotic and autophagic inducer currently being tested in relapsed cancer clinical trials, we unveiled the functional loss of nucleoporins, particularly the deformation of the FG-Nups barrier, in dying cancer cells. We propose that the loss of this nanoscopic resilience is an irreversible dying code in cells. These findings not only illuminate the potential application of HS-AFM as an intracellular nanoendoscopy but also might aid in the design of future nuclear targeted nanodrug delivery tailored to the individual patient.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.7b00906DOI Listing

Publication Analysis

Top Keywords

nuclear pore
12
high-speed atomic
8
atomic force
8
force microscopy
8
dying code
8
colorectal cancer
8
cancer cells
8
nuclear
5
microscopy reveals
4
reveals loss
4

Similar Publications

Necroptosis is a regulated form of cell death implicated in several pathological conditions, including viral infections. In this study, we investigated the expression and correlation of necroptosis markers MLKL, RIP1 and RIP3 in human liver tissue from fatal cases of yellow fever (YF) using immunohistochemistry (IHC). The liver samples were obtained from 21 YF-positive individuals and five flavivirus-negative controls with preserved liver parenchymal architecture.

View Article and Find Full Text PDF

From the Cytoplasm into the Nucleus-Hepatitis B Virus Travel and Genome Repair.

Microorganisms

January 2025

Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden.

Hepatitis B virus (HBV) is a major global health concern, affecting millions of people worldwide. HBV is part of the hepadnaviridae family and one of the primary causes of acute and chronic liver infections, leading to conditions such as cirrhosis and hepatocellular carcinoma (HCC). Understanding the intracellular transport and genome repair mechanisms of HBV is crucial for developing new drugs, which-in combination with immune modulators-may contribute to potential cures.

View Article and Find Full Text PDF

Background: Grain number (GN) is one of the key yield contributing factors in modern wheat (Triticum aestivum) varieties. Fruiting efficiency (FE) is a key trait for increasing GN by making more spike assimilates available to reproductive structures. Thousand grain weight (TGW) is also an important component of grain yield.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to acute tissue damage that disrupts the microenvironmental homeostasis of the spinal cord, inhibiting cell survival and function, and thereby undermining treatment efficacy. Traditional stem cell therapies have limited success in SCI, due to the difficulties in maintaining cell survival and inducing sustained differentiation into neural lineages. A new solution may arise from controlling the fate of stem cells by creating an appropriate mechanical microenvironment.

View Article and Find Full Text PDF

Unlabelled: Interlinked interactions between the viral capsid (CA), nucleoporins (Nups), and the antiviral protein myxovirus resistance 2 (MX2/MXB) influence human immunodeficiency virus 1 (HIV-1) nuclear entry and the outcome of infection. Although RANBP2/NUP358 has been repeatedly identified as a critical player in HIV-1 nuclear import and MX2 activity, the mechanism by which RANBP2 facilitates HIV-1 infection is not well understood. To explore the interactions between MX2, the viral CA, and RANBP2, we utilized CRISPR-Cas9 to generate cell lines expressing RANBP2 from its endogenous locus but lacking the C-terminal cyclophilin (Cyp) homology domain and found that both HIV-1 and HIV-2 infections were reduced significantly in RANBP2 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!