In this study, we employ molecular dynamics (MD) simulations to probe the spreading of a drop on a superhydrophobic (SH) surface. The SH surface consists of nanopillars and the drop spreads while being in the Cassie-Baxter (CB) state on the nanopillared surface. Most remarkably, unlike the spreading on non-SH surfaces, we witness that the spreading on SH surfaces is not dominated by the motion of the three-phase contact line (TPCL). Rather, the TPCL remains pinned at the edge of a nanopillar and the spreading is ensured by the liquid surface or the liquid-vapor interface (of this pinned TPCL) bending down and wetting the solid adjacent to the TPCL. Such bending may actually enforce a progressive temporal increase in the instantaneous local contact angle eventually making it equal to or more than 180°. This is in sharp contrast to the classical spreading dynamics, where, with the spreading being dictated by the TPCL motion, the local contact angle always decreases with time. We carry out simulations where the solids supporting the nanopillars have vastly different wettabilities; however, this principle of bending-driven spreading is invariably witnessed. In fact, given the recent experimental study on the rolling of drops on SH surfaces manifesting exactly identical liquid-surface-bending-driven drop motion, we can infer that regardless of the drop size (e.g., nanoscopic or millimetric) or the nature of drop motion (spreading or rolling), the motion of drops in the CB state on SH surfaces is universally driven by the bending of liquid surfaces and not by the motion of the TPCL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp01777d | DOI Listing |
Langmuir
January 2025
School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
Aerogels hold great potential in thermal insulation, catalytic supports, adsorption, and separation, due to their low density, high porosity, and low thermal conductivity. However, their inherent mechanical fragility and limited control functionality pose substantial challenges that hinder their practical use. In this study, a strategy is developed for the fabrication of cross-linked aramid nanofiber aerogels (cANFAs) by combining internanofiber surface cross-linking with ice-templating techniques.
View Article and Find Full Text PDFAdv Mater
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Shark skin features superhydrophilic and riblet-textured denticles that provide drag reduction, antifouling, and mechanical protection. The artificial riblet structures exhibit drag reduction capabilities in turbulent flow. However, the effects of the surface wettability of shark denticles and the cavity region underneath the denticle crown on drag reduction remain insufficiently explored.
View Article and Find Full Text PDFACS Nano
January 2025
Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China.
Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemical Engineering, Department of Chemistry and Materials Science, Aalto University, Tietotie 3 Espoo 02150, Finland.
Superhydrophobic surfaces find applications in numerous biomedical scenarios, requiring the repellence of biofluids and biomolecules. Plastron, the trapped air between a superhydrophobic surface and a wetting liquid, plays a pivotal role in biofluid repellency. A key challenge, however, is the often short-lived plastron stability in biofluids and the lack of knowledge surrounding it.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
The scarcity of freshwater resources and the treatment of dye wastewater have emerged as unavoidable challenges that need to be addressed. The combination of solar-driven interfacial evaporation, photocatalytic degradation, and superhydrophobic surface provides an effective approach for seawater desalination and the treatment of organic dyes. In this study, we fabricated a multifunctional synergistic solar evaporator by depositing cupric oxide nanoparticles onto polypyrrole (PPy) coating and subsequently modified it with a hydrophobic agent successfully.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!