CCN5/WISP-2 is an anti-invasive molecule and prevents breast cancer (BC) progression. However, it is not well understood how CCN5 prevents invasive phenotypes of BC cells. CCN5 protein expression is detected in estrogen receptor-α (ER-α) -positive normal breast epithelial cells as well as BC cells, which are weakly invasive and rarely metastasize depending on the functional status of ER-α. A unique molecular relation between CCN5 and ER-α has been established as the components of the same signaling pathway that coordinate some essential signals associated with the proliferation as well as delaying the disease progression from a non-invasive to invasive phenotypes. Given the importance of this connection, we determined the role of CCN5 in regulation of ER-α in different cellular settings and their functional relationship. In a genetically engineered mouse model, induced expression of CCN5 in the mammary ductal epithelial cells by doxycycline promotes ER-α expression. Similarly, CCN5 regulates ER-α expression and activity in normal and neoplastic breast cells, as documented in various in vitro settings such as mouse mammary gland culture, human mammary epithelial cell and different BC cell cultures in the presence or absence of human recombinant CCN5 (hrCCN5) protein. Mechanistically, at least in the BC cells, CCN5 is sufficient to induce ER-α expression at the transcription level via interacting with integrins-α6β1 and suppressing Akt followed by activation of FOXO3a. Moreover, in vitro and in vivo functional assays indicate that CCN5 treatment promotes response to tamoxifen in triple-negative BC (TNBC) cells possibly via restoring ER-α. Collectively, these studies implicates that the combination treatments of CCN5 (via activation of CCN5 or hrCCN5 treatment) and tamoxifen as potential therapies for TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5569333PMC
http://dx.doi.org/10.1038/oncsis.2017.43DOI Listing

Publication Analysis

Top Keywords

er-α expression
12
ccn5
11
cells
9
normal neoplastic
8
neoplastic breast
8
breast cells
8
breast cancer
8
invasive phenotypes
8
cells ccn5
8
er-α
8

Similar Publications

The / gene, linked to fine motor control in vertebrates, is a potential candidate gene thought to play a prominent role in human language production. It is expressed specifically in a subset of corticothalamic (CT) pyramidal cells (PCs) in layer 6 (L6) of the neocortex. These L6 FOXP2+ PCs project exclusively to the thalamus, with L6a PCs targeting first-order or both first- and higher-order thalamic nuclei, whereas L6b PCs connect only to higher-order nuclei.

View Article and Find Full Text PDF

Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.

View Article and Find Full Text PDF

IFN-γ licenses normal and pathogenic ALPK1/TIFA pathway in human monocytes.

iScience

January 2025

CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, F-69007 Lyon, France.

Alpha-kinase 1 (ALPK1) is an immune receptor sensing the bacterial nucleotide sugar ADP-heptose. ALPK1 phosphorylates TIFA leading to its oligomerization and downstream NF-κB activation. Specific mutations in are associated with an autoinflammatory syndrome termed ROSAH and with spiradenoma (skin cancers with sweat gland differentiation).

View Article and Find Full Text PDF

Abundant repressor binding sites in human enhancers are associated with the fine-tuning of gene regulation.

iScience

January 2025

Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.

The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.

View Article and Find Full Text PDF

Mechanism of hsa_circ_0069443 promoting early pregnancy loss through ALKBH5/FN1 axis in trophoblast cells.

iScience

January 2025

Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou 510150, China.

Studies have shown that circRNAs play an important regulatory role in trophoblast function and embryonic development. Based on sequencing and functional experiments, we found that hsa_circ_0069443 can regulate the function of trophoblast cells, and its presence is found in the exosomes secreted by trophoblast cells. It is known that exosomes mediate the interaction between the uterus and embryo, which is crucial for successful pregnancy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!