Multi-virion infectious units arise from free viral particles in an enveloped virus.

Nat Microbiol

Institute for Integrative Systems Biology (I2SysBio), Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain.

Published: May 2017

Many animal viruses are enveloped in a lipid bilayer taken up from cellular membranes. Because viral surface proteins bind to these membranes to initiate infection, we hypothesized that free virions may also be capable of interacting with the envelopes of other virions extracellularly. Here, we demonstrate this hypothesis in the vesicular stomatitis virus (VSV), a prototypic negative-strand RNA virus composed of an internal ribonucleocapsid, a matrix protein and an external envelope. Using microscopy, dynamic light scattering, differential centrifugation and flow cytometry, we show that free viral particles can spontaneously aggregate into multi-virion infectious units. We also show that, following establishment of these contacts, different viral genetic variants are co-transmitted to the same target cell. Furthermore, virion-virion binding can determine key aspects of viral fitness such as antibody escape. In purified virions, this process is driven by protein-lipid interactions probably involving the VSV surface glycoprotein and phosphatidylserine. Whereas we found that multi-virion complexes occurred unfrequently in standard cell cultures, they were abundant in other fluids such as saliva, a natural VSV shedding route. Our findings contrast with the commonly accepted perception of virions as passive propagules and show the ability of enveloped viruses to establish collective infectious units, which could in turn facilitate the evolution of virus-virus interactions and of social-like traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5447809PMC
http://dx.doi.org/10.1038/nmicrobiol.2017.78DOI Listing

Publication Analysis

Top Keywords

infectious units
12
multi-virion infectious
8
free viral
8
viral particles
8
viral
5
units free
4
particles enveloped
4
enveloped virus
4
virus animal
4
animal viruses
4

Similar Publications

Background: Phage therapy offers a promising alternative for treating serious infections, including diabetic foot ulcers (DFUs), through the lytic action of phages. This randomized double-blind study was conducted to evaluate the safety and tolerability of the TP-102 bacteriophage cocktail in patients with DFUs non-infected and infected with Staphylococcus aureus, Pseudomonas aeruginosa, and/or Acinetobacter baumannii.

Methods: Nineteen participants with DFUs were randomized after susceptibility testing.

View Article and Find Full Text PDF

Anti-IH is a common cold agglutinin that is typically clinically insignificant. We present a case that resulted in hemolysis. A 32-year-old male patient with transfusion-independent beta-thalassemia intermedia presented with symptomatic anemia.

View Article and Find Full Text PDF

Altered gut microbiota is linked to systemic lupus erythematosus (SLE), but its association with disease development, disease activity, and post-intervention changes remains unclear. We compared new-onset SLE (NOSLE, n = 25), SLE in remission (RemSLE, n = 30), and healthy controls (HC, n = 30) cross-sectionally and conducted the first longitudinal analysis of NOSLE patients (n = 22) from pre-intervention to remission over 12 months. Significant β-diversity differences were observed in both NOSLE and RemSLE compared to HC, but not between NOSLE and RemSLE.

View Article and Find Full Text PDF

Respiratory interventions including noninvasive ventilation, continuous positive airway pressure and high-flow nasal oxygen generated infectious aerosols may increase risk of airborne disease (SARS-CoV-2, influenza virus) transmission to healthcare workers. We developed and tested a prototype portable UV-C device to sterilize high flows of viral-contaminated air from a simulated patient source at airflow rates of up to 100 l/m. Our device consisted of a central quartz tube surrounded 6 high-output UV-C lamps, within a larger cylinder allowing recirculation past the UV-C lamps a second time before exiting the device.

View Article and Find Full Text PDF

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!