Bicelles are generally formed by phospholipid-based systems and are useful for various applications, such as nanocarriers or membrane protein crystallization. The same disc-like assemblies, nonionic surfactant bicelles (NSBs), can also be formed using nonionic amphiphiles, but this has not been reported extensively. We report a novel NSB system that employs the double-tailed nonionic amphiphile, polyglyceryl dialkyl ether (CCG), which has two alkyl chains and a polyglyceryl group. A symmetric-tail molecule, CCG, formed vesicles, whereas an asymmetric-tail molecule, CCG, formed NSBs through a simple one-step process using ultrasonication. The 1 wt% aqueous solution of CCG was in a two-phase equilibrium of a lamellar phase and a water phase. Transparent dispersion was obtained through ultrasonication treatment. The size distribution in the dispersion was obtained by dynamic light scattering (DLS), resulting in a narrow distribution of around 20 nm in diameter. A negatively-stained transmission electron microscopy (TEM) image showed oblong and spherical shapes, which are typically observed in bicelle-forming systems. A small angle neutron scattering (SANS) measurement well proved bicelle formation by fitting a core-shell bicelle form factor model. The disc thickness and diameter were in agreement with the values obtained by DLS and TEM, respectively. A larger shell thickness at the rim part than at the flat disc part suggested that NSB aggregates have inhomogeneous molecular distribution. Similar to phospholipid systems, the bicelle-forming CCG system produced a defective lamellar phase formation at high surfactant concentrations, whereas a general lamellar phase was formed in the vesicle-forming CCG system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp02585h | DOI Listing |
J Pharm Anal
December 2024
MTA-HUN-REN TTK Lendület "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
The aim of the research is to increase the applicability of lipopeptides as drugs. To this end, non-ionic triblock copolymers, namely poloxamers, were applied. The physico-chemical properties of poloxamers vary depending on the length of the blocks.
View Article and Find Full Text PDFCleaning and sterilization are critical Prerequisite Programs in sanitation management based on HACCP. Most food factories clean and sanitize equipment daily after production using detergents containing benzalkonium chloride (BAC). However, in factories that produce oil and fat-rich foods, it has been discovered that microbes can persist on production equipment.
View Article and Find Full Text PDFNanocrystalline formulations typically contain stabilizing additives to minimize the risk of particle growth or agglomeration. This risk is particularly relevant when the nanosuspension is converted into a solid drug product as the original state of the nanosuspension should be restored upon redispersion of the drug product in vivo. In this work, the behavior of different nonionic and anionic surfactants in solid nanocrystalline formulations and their effects on redispersibility under biorelevant conditions were investigated.
View Article and Find Full Text PDFNano Lett
January 2025
Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China.
Ternary copper halides with an eco-friendly property have emerged as attractive candidates to replace toxic lead-containing perovskites for light-emitting diodes (LEDs), yet achieving long-wavelength electroluminescence remains unexplored. Herein, we report the first realization of orange-emitting LEDs (595 nm) based on nontoxic organic-inorganic PEACuI (PEA = β-phenylethylamine) films enabled by a nonionic surfactant poly(propylene glycol) bis(2-aminopropyl ether) (APPG) chemisorption. Experimental and theoretical analyses rationalize that the APPG additive has strong chemisorption with the Cu-I framework within the grain boundaries of PEACuI films, which not only improves the film's morphology but also passivates the iodine vacancy defects.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Research Center of Digital Oral Science and Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!