Glucocorticoids Retain Bipotent Fibroblast Progenitors during Alveolar Septation in Mice.

Am J Respir Cell Mol Biol

Department of Veterans Affairs Research Service and.

Published: July 2017

Glucocorticoids have been widely used and exert pleiotropic effects on alveolar structure and function, but do not improve the long-term clinical outcomes for patients with bronchopulmonary dysplasia, emphysema, or interstitial lung diseases. Treatments that foster alveolar regeneration could substantially improve the long-term outcomes for such patients. One approach to alveolar regeneration is to stimulate and guide intrinsic alveolar progenitors along developmental pathways used during secondary septation. Other investigators and we have identified platelet-derived growth factor receptor-α-expressing fibroblast subpopulations that are alternatively skewed toward myofibroblast or lipofibroblast phenotypes. In this study, we administered either the glucocorticoid receptor agonist dexamethasone (Dex) or the antagonist mifepristone to mice during the first postnatal week and evaluated their effects on cellular proliferation and adoption of α-smooth muscle actin and lipid droplets (markers of the myofibroblast and lipofibroblast phenotypes, respectively). We observed that Dex increased the relative abundance of fibroblasts with progenitor characteristics, i.e., containing both α-smooth muscle actin and lipid droplets, uncoupling protein-1 (a marker of brown and beige adipocytes), delta-like ligand-1, and stem cell antigen-1. Dex enhanced signaling through the Smad1/5 pathway, which increased uncoupling protein-1 in a lung fibroblast progenitor cell line. We conclude that glucocorticoid receptor manipulation can sustain fibroblast plasticity, and posit that targeting downstream glucocorticoid responsive pathways could steer fibroblast progenitors along more desirable regenerative pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5946667PMC
http://dx.doi.org/10.1165/rcmb.2016-0376OCDOI Listing

Publication Analysis

Top Keywords

fibroblast progenitors
8
improve long-term
8
outcomes patients
8
alveolar regeneration
8
myofibroblast lipofibroblast
8
lipofibroblast phenotypes
8
glucocorticoid receptor
8
α-smooth muscle
8
muscle actin
8
actin lipid
8

Similar Publications

Peritoneal metastasis (PM) remains a major challenge in patients with gastric cancer (GC) and occurs preferentially in adipose-rich organs, such as the omentum. Adipose-derived stem cells (ASCs) may influence cancer behavior. This study aimed to investigate whether ASCs isolated from the omentum can act as progenitors of cancer-associated fibroblasts (CAFs) and analyze their effects on the cancer stem cell (CSC) niche and the treatment resistance of GC cells.

View Article and Find Full Text PDF

Contemporary therapies following heart failure center on regenerative approaches to account for the loss of cardiomyocytes and limited regenerative capacity of the adult heart. While the delivery of cardiac progenitor cells has been shown to improve cardiac function and repair following injury, recent evidence has suggested that their paracrine effects (or secretome) provides a significant contribution towards modulating regeneration, rather than the progenitor cells intrinsically. The direct delivery of secretory biomolecules, however, remains a challenge due to their lack of stability and tissue retention, limiting their prolonged therapeutic efficacy.

View Article and Find Full Text PDF

Purpose: A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation.

View Article and Find Full Text PDF

Despite improvements in clinical outcomes of acute myocardial infarction (AMI), mortality rates remain high, indicating the need for further understanding of the pathogenesis and developing more effective cardiac protection strategies. Extracellular vesicles (EVs) carry proteins and noncoding RNAs (ncRNAs) derived from different cardiac cell populations, mainly including cardiomyocytes, endothelial cells, endothelial progenitor cells, cardiac progenitor cells, cardiosphere-derived cells, immune cells, fibroblasts and cardiac telocytes have vital roles under both physiological and pathological process such as myocardial infarction (MI). The content of EVs can also indicate the status of their parental cells and serve as a biomarker for monitoring the risk of cardiac injury.

View Article and Find Full Text PDF

Single-nucleus transcriptomic profiling of the diaphragm during mechanical ventilation.

Sci Rep

December 2024

Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.

Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!