Accumulating evidence demonstrates that autophagy and microRNAs (miRNAs) play key roles in regulating virus-host interactions and can restrict or facilitate viral replication. In the present study we examined whether a functional relationship exists between autophagy, miRNA and porcine circovirus type 2 (PCV2) infection, using several approaches. We demonstrated that there was a positive correlation between PCV2 infection and autophagy in 3D4/21 cells and autophagy induced by PCV2 infection triggered PCV2 replication. Four miRNA were selected by real-time PCR and further studied, but only miR-30a-5p mimic had a significant effect on PCV2 replication. Overexpression of miR-30a-5p significantly enhanced PCV2 infection and autophagy in a dose-dependent manner. Blockage of miR-30a-5p significantly decreased PCV2 replication. We provided further evidence that miR-30a-5p regulate the link between PCV2 infection and host immune system. Furthermore, miR-30a-5p targeted and regulated 14-3-3 gene, which is a regulator of autophagy. Flow cytometry data demonstrated that miR-30a-5p promotes cell cycle arrest at the G2 phase to regulate PCV2 replication and autophagy by interacting directly with 14-3-3, but not with the PCV2 genome. These data not only provide new insights into virus-host interactions during PCV2 infection but also suggest a potential new antiviral therapeutic strategy against PCV2 infection.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-017-3400-7DOI Listing

Publication Analysis

Top Keywords

pcv2 infection
28
pcv2 replication
16
pcv2
12
porcine circovirus
8
circovirus type
8
autophagy
8
virus-host interactions
8
infection autophagy
8
infection
7
replication
6

Similar Publications

Divergent Effects of Capsid Proteins on Type I Interferon Signaling.

Pathogens

January 2025

Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan.

Viruses in the family can infect mammals and birds. Porcine circovirus type 2 (PCV2) significantly affects the livestock industry by causing porcine circovirus-associated diseases, such as postweaning multisystem wasting syndrome, respiratory disease complex, and dermatitis nephropathy syndrome. Additionally, beak and feather disease virus in parrots, canine circovirus in dogs, and columbid circovirus (pigeon circovirus) in racing pigeons induce immunosuppression, followed by secondary infections in these hosts.

View Article and Find Full Text PDF

Diseases associated with porcine circovirus type 2 (PCV2) and pseudorabies virus (PRV) significantly affect the economy of pig farms, particularly when combined infections lead to bacterial co-infections. Antigens from the pseudorabies variant strain gB and gD proteins and PCV2 (genotyped) Cap protein were mixed with the pattern recognition receptor (PRR) agonist FLICd as adjuvants and formulated with a micro-hydrogel adjuvant into PCV2 and PRV bivalent subunit vaccines. Twenty pigs, aged 30-35 days, were divided into groups A (received bivalent subunit vaccine) and B (received bivalent subunit vaccines with recombinant FLICd adjuvant), as well as C (non-vaccinated challenge control) and D (blank control).

View Article and Find Full Text PDF

The effect and mechanism of sanguinarine against PCV2 based on the analysis of network pharmacology and TMT quantitative proteomics.

Int J Biol Macromol

January 2025

Shanxi Key Lab. for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China. Electronic address:

Porcine circovirus type 2 (PCV2) is highly prevalent in nature and serves as the primary pathogen responsible for porcine circovirus-associated disease (PCVD/PCVAD), posing a significant threat to pig production. Currently, vaccination alone could not provide the complete protection for PCV2 infection. The active ingredients of traditional Chinese medicine have shown a positive effect in combating viral infections.

View Article and Find Full Text PDF

Coinfections with porcine circovirus types 2, 3, and 4 (PCV2, PCV3, and PCV4) are increasingly being detected in the swine industry. However, there is no commercially available vaccine which prevents coinfection with PCV2, PCV3, and PCV4. The development of a vaccine expressing capsid (Cap) fusion proteins of multiple PCVs represents a promising approach for broadly preventing infection with PCVs.

View Article and Find Full Text PDF

Development of a Synthetic VP1 Protein Peptide-Based ELISA to Detect Antibodies Against Porcine Bocavirus Group 3.

Viruses

December 2024

Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animals (XJ-KLNDSCHA), College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China.

Porcine bocavirus (PBoV), classified within the genus Bocaparvovirus, has been reported worldwide. PBoV has been divided into group 1, group 2, and group 3. PBoV group 3 (G3) viruses are the most prevalent in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!