The purpose of this study was to develop a safe and non-toxic alternative to the conventional conservative treatment of peritoneal carcinomatosis with malignant ascites (PCMA) by investigating the efficacy and safety of local modulated electro-hyperthermia (mEHT) combined with the traditional Chinese medicine (TCM) 'Shi Pi' herbal decoction, compared with standard intraperitoneal chemoinfusion (IPCI). A randomized, controlled, single-center, open-label clinical trial (phase II) with two parallel groups (allocation ratio, 1:1) was conducted to investigate the efficacy and safety of mEHT+TCM (study group, SG) vs. standard IPCI (control group, CG) in patients with PCMA by intention-to-treat analysis. A total of 260 patients with PCMA were randomly allocated into the two groups (130/130); mEHT was applied for 60 min per session every second day for 4 weeks, for a total of 14 sessions. The TCM decoction was administered orally, at 400 ml daily. In CG, occlusive IPCI with cisplatin (30-60 mg) and fluorouracil (500-600 mg/m) was applied twice, biweekly. The objective response rate (ORR), quality of life (QoL) and adverse event rate (AER) in the two groups were evaluated 1 month after treatment, analyzed and compared. The present study is registered on ClinicalTrials.gov (NCT02638051). No case was lost or excluded (0/260). The ORR in SG was 77.69% (101/130) vs. 63.85% (73/130) in CG (P<0.05). The QoL in SG was 49.23% vs. 32.3% in CG (P<0.05). The AER in SG was 2.3% (3/130) vs. 12.3% (16/130) in CG (P<0.05). All the adverse events were grade I. In conclusion, the combination of mEHT with TCM achieves better control of PCMA compared with standard IPCI, with less toxicity. Both components of the combination are non-toxic treatments easily tolerated by patients. Thus, this combined treatment may be preferred due to the better benefit-harm balance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431547 | PMC |
http://dx.doi.org/10.3892/mco.2017.1221 | DOI Listing |
J Am Chem Soc
January 2025
Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Lattice distortion and disorder in the chemical environment of magnetic atoms within high-entropy compounds present intriguing issues in the modulation of magnetic functional compounds. However, the complexity inherent in high-entropy disordered systems has resulted in a relative scarcity of comprehensive investigations exploring the magnetic functional mechanisms of these alloys. Herein, we investigate the magnetocaloric effect (MCE) of the high-entropy intermetallic compound GdTbDyHoErCo.
View Article and Find Full Text PDFBrain
January 2025
Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou 510120, China.
Epilepsy is a network disorder, involving neural circuits at both the micro- and macroscale. While local excitatory-inhibitory imbalances are recognized as a hallmark at the microscale, the dynamic role of distinct neuron types during seizures remain poorly understood. At the macroscale, interactions between key nodes within the epileptic network, such as the central median thalamic nucleus (CMT), are critical to the, hippocampal epileptic process.
View Article and Find Full Text PDFCell Mol Life Sci
January 2025
School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong.
C1orf115 has been identified in high-throughput screens as a regulator of multidrug resistance possibly mediated through an interaction with ATP-dependent membrane transporter ABCB1. Here we show that C1orf115 not only shares structural similarities with FACI/C11orf86 to interact with clathrin adaptors to undergo endocytosis, but also induces ABCA1 transcription to promote cholesterol efflux. C1orf115 consists of an N-terminal intrinsically disordered region and a C-terminal α-helix.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Materials Science, University of Patras, 26504 Patras, Greece.
Monte Carlo molecular simulations of curve-shaped rods show the propensity of such shapes to polymorphism revealing both smectic and polar nematic phases. The nematic exhibits a nanoscale modulated local structure characterized by a unique, polar, -symmetry axis that tightly spirals generating a mirror-symmetry-breaking organization of the achiral rods-form chirality. A comprehensive characterization of the polarity and its symmetries in the nematic phase confirms that the nanoscale modulation is distinct from the elastic deformations of a uniaxial nematic director in the twist-bend nematic phase.
View Article and Find Full Text PDFEpidemiologia (Basel)
January 2025
Biotechnology Research, Innovation and Design for Health Products (BRIDGES), Research Laboratory on Epidemiology and Population Health, Polytechnic of Guarda Av. Dr. Francisco Sá Carneiro 50, 6300-559 Guarda, Portugal.
Irisin is a protein resulting from a proteolytic cleavage of fibronectin type III domain-containing protein 5 (FND5). The ability of irisin to modulate adipocyte and control glucose metabolism in human metabolic diseases gave rise to the hypothesis that irisin could have a pivotal role in aging-related diseases. Although in animal models, increased levels of irisin have been positively associated with better health outcomes, in humans, its role remains controversial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!