Healthy nutrition is vital for good health and well-being. Despite the important role of a healthy nutritional diet, recommendations for healthy eating remain elusive and are mainly based on general properties of nutrients. The present study proposes an improved characterization of the molecular characteristics of nutrients, which are important for biological functions and can be useful in describing a healthy diet. We investigated the electronic properties of some known nutrient ingredients. In this analysis, we used the average quasi valence number (AQVN) and the electron-ion interaction potential (EIIP), which are molecular descriptors that represent the basic electronic properties of organic molecules. Our results show that most nutrients can be represented by specific groups of organic compounds according to their basic electronic properties, and these differ from the vast majority of known chemicals. Based on this finding, we have proposed a simple criterion for the selection of food components for healthy nutrition. Further studies on the electronic properties of nutrients could serve as a basis for better understanding of their biological functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5428496 | PMC |
http://dx.doi.org/10.12688/f1000research.10537.1 | DOI Listing |
Biosens Bioelectron
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China. Electronic address:
The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.
View Article and Find Full Text PDFAnnu Rev Phys Chem
January 2025
1Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA; email:
Inspired by the success of graphene, two-dimensional (2D) materials have been at the forefront of advanced (opto-)nanoelectronics and energy-related fields owing to their exotic properties like sizable bandgaps, Dirac fermions, quantum spin Hall states, topological edge states, and ballistic charge carrier transport, which hold promise for various electronic device applications. Emerging main group elemental 2D materials, beyond graphene, are of particular interest due to their unique structural characteristics, ease of synthetic exploration, and superior property tunability. In this review, we present recent advances in atomic-scale studies of elemental 2D materials with an emphasis on synthetic strategies and structural properties.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Previous studies on natural samples of pampaloite (AuSbTe) revealed the crystal structure of a potentially cleavable and/or exfoliable material, while studies on natural and synthetic montbrayite (Sb-containing AuTe) claimed various chemical compositions for this low-symmetry compound. Few investigations of synthetic samples have been reported for both materials, leaving much of their chemical, thermal, and electronic characteristics unknown. Here, we investigate the stability, electronic properties, and synthesis of the gold antimony tellurides AuSbTe and AuSbTe (montbrayite).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P. R. China.
Flexible electronics have been rapidly advancing and have garnered significant interest in monitoring physiological activities and health conditions. However, flexible electronics are prone to detachment in humid environments, so developing human-friendly flexible electronic devices that can effectively monitor human movement under various aquatic conditions and function as flexible electrodes remains a significant challenge. Here, we report a strongly adherent, self-healing, and swelling-resistant conductive hydrogel formed by combining the dual synergistic effects of hydrogen bonding and dipole-dipole interactions.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
Optical manipulation of nanomaterials using light resonant with material excitations holds promise for enhancing optical forces and sorting particles by unique quantum properties. Conventional resonant optical sorting mainly relies on absorption and scattering forces, making it difficult to sort nanomaterials by specific emission lines. Furthermore, emission typically induces negligible force unless the material is highly anisotropic, limiting selective manipulation via emission characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!