MicroRNAs (miRs) can function as tumor suppressors or oncogenes in different types of human malignancy, and may provide an effective therapy for cancer. The expression and functions of miR-592 have previously been studied in relation to cancer. However, the expression and potential functions of miR-592 in hepatocellular carcinoma (HCC) are still unknown. Using quantitative polymerase chain reaction, MTT assays, cellular migration and invasion assays, bioinformatics software, western blot analysis and dual-luciferase report assays, the present study explored the expression and roles of miR-592 in HCC. It was identified that miR-592 was significantly downregulated in HCC tissues and cell lines. The statistical analysis revealed that low expression of miR-592 was evidently associated with tumor node metastasis stage and lymph node metastasis. Additionally, the present study provided the first evidence that miR-592 was likely to directly target the insulin-like growth factor 1 receptor . The present results indicated that miR-592 could be investigated as an efficacious therapeutic target for HCC in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5431753 | PMC |
http://dx.doi.org/10.3892/ol.2017.5902 | DOI Listing |
Ann Surg Oncol
January 2025
Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan.
Background: Tumor size (TS) in pancreatic ductal adenocarcinoma (PDAC) is one of the most important prognostic factors. However, discrepancies between TS on preoperative images (TSi) and pathological specimens (TSp) have been reported. This study aims to evaluate the factors associated with the differences between TSi and TSp.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
The zinc finger protein 32 (ZNF32) has been associated with high expression in various cancers, underscoring its significant function in both cancer biology and immune response. To further elucidate the biological role of ZNF32 and identify potential immunotherapy targets in cancer, we conducted an in-depth analysis of ZNF32. We comprehensively investigated the expression of ZNF32 across tumors using diverse databases, including TCGA, CCLE, TIMER2.
View Article and Find Full Text PDFCell Death Discov
January 2025
School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
Methyltransferase-like 1 (METTL1)-mediated m7G modification is a common occurrence in various RNA species, including mRNAs, tRNAs, rRNAs, and miRNAs. Recent evidence suggests that this modification is linked to the development of several cancers, making it a promising target for cancer therapy. However, the specific role of m7G modification in cutaneous squamous cell carcinoma (cSCC) is not well understood.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia; Translational Research Institute, Queensland University of Technology, Brisbane, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Queensland, Australia. Electronic address:
Pyruvate dehydrogenase kinase-1 (PDK1) plays a crucial role in cancer cell metabolism by regulating the glycolytic pathway. Although, inhibitors targeting PDK1 have been effective in inhibiting glycolysis in multiple cancers, their lack of selectivity leading to off-target effects limit their therapeutic benefit. Herein, we investigated the inhibitory potential of six PDK1 inhibitors on cellular proliferation, migration, and invasion of androgen-sensitive LNCaP and androgen-negative PC-3 prostate cancer cells.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
Colorectal cancer (CRC) is a significant global health challenge, marked by varying incidence and mortality rates across different regions. The pathogenesis of CRC involves multiple stages, including initiation, promotion, progression, and metastasis, influenced by genetic and epigenetic factors. The chaperone protein glucose-regulated protein 78 (GRP78), crucial in regulating the unfolded protein response (UPR) during endoplasmic reticulum (ER) stress, plays a pivotal role in CRC pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!