The human gut microbiome modulates many host processes, including metabolism, inflammation, and immune and cellular responses. It is becoming increasingly apparent that the microbiome can also influence the development of cancer. In preclinical models, the host response to cancer treatment has been improved by modulating the gut microbiome; this is known to have an altered composition in many diseases, including cancer. In addition, cancer treatment with microbial agents or their products has the potential to shrink tumours. However, the microbiome could also negatively influence cancer prognosis through the production of potentially oncogenic toxins and metabolites by bacteria. Thus, future antineoplastic treatments could combine the modulation of the microbiome and its products with immunotherapeutics and more conventional approaches that directly target malignant cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrmicro.2017.44DOI Listing

Publication Analysis

Top Keywords

microbiome products
8
gut microbiome
8
cancer treatment
8
microbiome
6
cancer
5
anticancer effects
4
effects microbiome
4
products human
4
human gut
4
microbiome modulates
4

Similar Publications

The interaction of bacteria and harmonine in harlequin ladybird confers an interspecies competitive edge.

Proc Natl Acad Sci U S A

January 2025

Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

is a dominant member of the human gut microbiome and produces short-chain fatty acids (SCFAs). These promote immune system function and inhibit inflammation, making this microbe important for human health. Lactate is a primary source of gut SCFAs but its utilization by has not been explored.

View Article and Find Full Text PDF

Fluoride-Induced Autophagy and Apoptosis in the Mouse Ovary: Genomic Insights into IL-17 Signaling and Gut Microbiota Dysbiosis.

J Agric Food Chem

January 2025

Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471000, Henan,China.

Chronic fluoride (F) exposure is linked to gonadotoxicity in females, yet the underlying molecular mechanisms remain unclear. This study investigated fluoride-induced reprotoxicity using advanced genomic profiling. RNA-seq analysis identified significant activation of autophagy, apoptosis, and IL-17 signaling pathways in fluoride-exposed female mice.

View Article and Find Full Text PDF

Unlabelled: Studies have suggested that phytochemicals in green tea have systemic anti-inflammatory and neuroprotective effects. However, the mechanisms behind these effects are poorly understood, possibly due to the differential metabolism of phytochemicals resulting from variations in gut microbiome composition. To unravel this complex relationship, our team utilized a novel combined microbiome analysis and metabolomics approach applied to low complexity microbiome (LCM) and human colonized (HU) gnotobiotic mice treated with an acute dose of powdered matcha green tea.

View Article and Find Full Text PDF

Functional microbiome assembly in food environments: addressing sustainable development challenges.

Compr Rev Food Sci Food Saf

January 2025

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.

The global food system faces numerous challenges, creating an urgent need for sustainable reform. Functional microbiome assemblies offer transformative potential by endowing microbial foods with diverse, beneficial characteristics. These assemblies can dynamically influence specific food systems, positioning them as a promising approach for reshaping food production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!