Alterations in zebrafish motility are used to identify neurotoxic compounds, but few have reported how methodology may affect results. To investigate this, we exposed embryos to bisphenol A (BPA) or tetrabromobisphenol A (TBBPA) before assessing larval motility. Embryos were maintained on a day/night cycle (DN) or in constant darkness, were reared in 96 or 24 well plates (BPA only), and behavioural tests were carried out at 96, 100, or 118 (BPA only) hours post fertilisation (hpf). We found that the prior photo-regime, larval age, and/or arena size influence behavioural outcomes in response to toxicant exposure. For example, methodology determined whether 10μM BPA induced hyperactivity, hypoactivity, or had no behavioural effect. Furthermore, the minimum effect concentration was not consistent between different methodologies. Finally, we observed a mechanism previously used to explain hyperactivity following BPA exposure does not appear to explain the hypoactivity observed following minor alterations in methodology. Therefore, we demonstrate how methodology can have notable implications on dose responses and behavioural outcomes in larval zebrafish motility following identical chemical exposures. As such, our results have significant consequences for human and environmental risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2017.05.021 | DOI Listing |
STAR Protoc
January 2025
Laboratory of Developmental Neurobiology, International Institute of Molecular Mechanisms and Machines, 02-247 Warsaw, Poland; Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 02-109 Warsaw, Poland. Electronic address:
Mechanistic target of rapamycin complex 1 (mTorC1) activity plays a crucial role in brain development. Here, we present an approach for rapamycin microinjection into the habenula of larval zebrafish to achieve localized inhibition of the mTorC1 pathway and explore the role of mTorC1 in habenula function. We describe steps for performing microinjections and maintaining zebrafish larvae before and after the procedure.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
January 2025
Alzheimer's Disease Genetics Laboratory, School of Molecular and Biomedical Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia.
Sanfilippo syndrome (mucopolysaccharidosis type III, MPSIII) causes childhood dementia, while Alzheimer's disease is the most common type of adult-onset dementia. There is no cure for either of these diseases, and therapeutic options are extremely limited. Increasing evidence suggests commonalities in the pathogenesis of these diseases.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway. Electronic address:
The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
It is crucial to inhibit the neuroinflammation response as it is a prominent factor contributing to the pathogenesis of neurodegenerative disorders. However, the limited development of neuroinflammation models dramatically hinders the efficiency of nanomedicine discovery. In recent years, the optically transparent zebrafish model provided unique advantages for imaging of the whole body, allowing the progression of the disease to be visualized.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Institute of Biology Leiden, Animal Science and Health, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
The TIRAP protein is an adaptor protein in TLR signaling which links TLR2 and TLR4 to the adaptor protein Myd88. The transcriptomic profiles of zebrafish larvae from a , and mutant and the corresponding wild type controls under unchallenged developmental conditions revealed a specific involvement of in calcium homeostasis and myosin regulation. Metabolomic profiling showed that the mutation results in lower glucose levels, whereas a mutation leads to higher glucose levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!