Melanopsin Contributions to the Representation of Images in the Early Visual System.

Curr Biol

Division of Neuroscience and Experimental Psychology, School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK. Electronic address:

Published: June 2017

Melanopsin photoreception enhances retinal responses to variations in ambient light (irradiance) and drives non-image-forming visual reflexes such as circadian entrainment [1-6]. Melanopsin signals also reach brain regions responsible for form vision [7-9], but melanopsin's contribution, if any, to encoding visual images remains unclear. We addressed this deficit using principles of receptor silent substitution to present images in which visibility for melanopsin versus rods+cones was independently modulated, and we recorded evoked responses in the mouse dorsal lateral geniculate nucleus (dLGN; thalamic relay for cortical vision). Approximately 20% of dLGN units responded to patterns visible only to melanopsin, revealing that melanopsin signals alone can convey spatial information. Spatial receptive fields (RFs) mapped using melanopsin-isolating stimuli had ON centers with diameters ∼13°. Melanopsin and rod+cone responses differed in the temporal domain, and responses to slow changes in radiance (<0.9 Hz) and stationary images were deficient when stimuli were rendered invisible for melanopsin. We employed these data to devise and test a mathematical model of melanopsin's involvement in form vision and applied it, along with further experimental recordings, to explore melanopsin signals under simulated active view of natural scenes. Our findings reveal that melanopsin enhances the thalamic representation of scenes containing local correlations in radiance, compensating for the high temporal frequency bias of cone vision and the negative correlation between magnitude and frequency for changes in direction of view. Together, these data reveal a distinct melanopsin contribution to encoding visual images, predicting that, under natural view, melanopsin augments the early visual system's ability to encode patterns over moderate spatial scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462620PMC
http://dx.doi.org/10.1016/j.cub.2017.04.046DOI Listing

Publication Analysis

Top Keywords

melanopsin signals
8
melanopsin
7
melanopsin contributions
4
contributions representation
4
representation images
4
images early
4
early visual
4
visual system
4
system melanopsin
4
melanopsin photoreception
4

Similar Publications

This review explores the intricate relationship between glaucoma and circadian rhythm disturbances. As a principal organ for photic signal reception and transduction, the eye plays a pivotal role in coordinating the body's circadian rhythms through specialized retinal ganglion cells (RGCs), particularly intrinsically photosensitive RGCs (ipRGCs). These cells are critical in transmitting light signals to the suprachiasmatic nucleus (SCN), the central circadian clock that synchronizes physiological processes to the 24-hour light-dark cycle.

View Article and Find Full Text PDF

Pupillary response to blue light as a biomarker of seasonal pattern in Major Depressive Episode: A clinical study using pupillometry.

Psychiatry Res

December 2024

Département de psychiatrie et d'addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hôpital Bichat - Claude Bernard, F-75018 Paris, France; Université Paris Cité, NeuroDiderot, Inserm, FHU I2-D2, F-75019 Paris, France; Centre ChronoS, GHU Paris - Psychiatrie & Neurosciences, 1 rue Cabanis, 75014 Paris, France; CNRS UPR 3212 & Strasbourg University, Institute for Cellular and Integrative Neurosciences, F-67000, Strasbourg, France. Electronic address:

Depressive disorders are characterized by disturbances in light signal processing. More specifically, an alteration of the melanopsin response is suggested. The post-illumination pupillary response (PIPR) to blue light (post-blue PIPR) is increasingly used as a marker of the activity of intrinsically photosensitive melanopsin ganglion cells (ipRGCs).

View Article and Find Full Text PDF

What can the eye see with melanopsin?

Proc Natl Acad Sci U S A

November 2024

Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, QLD 4059, Australia.

A subpopulation of human retinal ganglion cells contains the melanopsin photopigment, allowing them to act as a fifth photoreceptor class. These ganglion cells project to the visual cortex, but to reveal its intrinsic contribution to conscious vision is technically challenging as it requires melanopsin to be separated from the responses originating in the rods and three cone classes. Using a display engineered to isolate the melanopic visual response, we show that it detects lowpass spatial (≤0.

View Article and Find Full Text PDF

The protective effects of time spent outdoors emphasize the major role of daylight in myopia. Based on the pathophysiology of myopia, the impact of blue light stimulation on the signaling cascade, from melanopsin at the blind spot to clinically relevant biomarkers for myopia, was investigated. Parameters and site of light stimulation are mainly defined by the photopigment melanopsin, that is sensitive to blue light with a peak wavelength of 480 nm and localized on the intrinsically photosensitive retinal ganglion cells (ipRGC) whose axons converge to the optic disc, corresponding to the physiological blind spot.

View Article and Find Full Text PDF

Photoneuroendocrine, circadian and seasonal systems: from photoneuroendocrinology to circadian biology and medicine.

Cell Tissue Res

September 2024

Institute Anatomy I, Medical Faculty, Heinrich Heine University, Duesseldorf, Federal Republic of Germany.

This contribution highlights the scientific development of two intertwined disciplines, photoneuroendocrinology and circadian biology. Photoneuroendocrinology has focused on nonvisual photoreceptors that translate light stimuli into neuroendocrine signals and serve rhythm entrainment. Nonvisual photoreceptors first described in the pineal complex and brain of nonmammalian species are luminance detectors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!