Since the discovery of neural regions in the monkey brain that respond preferentially to multisensory stimuli presented in proximal space, researchers have been studying this specialised spatial representation in humans. It has been demonstrated that approaching auditory or visual stimuli modulate tactile processing, while they are within the peripersonal space (PPS). The aim of the current study is to investigate the additional effects of tactile expectation on the PPS-related multisensory interactions. Based on the output of a computational simulation, we expected that as tactile expectation increases rapidly during the course of the motion of the visual stimulus, the outcome RT curves would mask the multisensory contribution of PPS. When the tactile expectation remains constant during the motion, the PPS-related spatially selective multisensory processes become apparent. The behavioural results on human experiments followed the pattern predicted by the simulation. That is, rapidly changing levels of tactile expectation, caused by dynamic visual stimuli, masks the outcome of the multisensory processes within peripersonal space. This indicates that both PPS-related multisensory interactions and tactile expectations play an important role in anticipating and responding to interactions with the body.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502056 | PMC |
http://dx.doi.org/10.1007/s00221-017-4965-9 | DOI Listing |
JBJS Essent Surg Tech
January 2025
Department of Orthopaedic Surgery, Montefiore Medical Center, Bronx, New York.
Background: The pelvis is one of the most common areas for metastatic bone disease. We recently described the use of a minimally invasive percutaneous screw fixation of metastatic non-periacetabular pelvic lesions, with excellent results.
Description: The procedure can be completed in a standard operating theater without the need for special instruments.
J Neural Eng
December 2024
Biomedical Engineering Unit, Department of Industrial Engineering, University of Florence, Florence, Italy.
. The perception of softness plays a key role in interactions with various objects, both in the real world and in virtual/augmented reality (VR/AR) systems. The latter can be enriched with haptic feedback on virtual objects' softness to improve immersivity and realism.
View Article and Find Full Text PDFJ Physiol
December 2024
Delft University of Technology, Delft, The Netherlands.
A task as simple as holding a cup between your fingers generates complex motor commands to finely regulate the forces applied by muscles. These fine force adjustments ensure the stability and integrity of the object by preventing it from slipping out of grip during manipulation and by reacting to perturbations. To do so, our sensorimotor system constantly monitors tactile and proprioceptive information about the force object exerts on fingertips and the friction of the surfaces to determine the optimal grip force.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China.
Mater Horiz
November 2024
Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!