Improving the pharmacokinetics and tissue distribution of pyrinezolid by self-assembled polymeric micelles.

Colloids Surf B Biointerfaces

State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China. Electronic address:

Published: August 2017

Antibiotic-resistance by bacteria is a growing global concern within the healthcare field, and it has provided an impetus for continued antimicrobial development. Pyrinezolid (PZ), a novel oxazolidinone compound, can effectively inhibit most gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Though PZ is a promising antimicrobial candidate, the druggability of PZ is limited by its poor water solubility. Therefore, the amphipathic mPEG-PLLA copolymer was used to prepare the pyrinezolid micelles (PZ-M). Herein, we described the preparation, pharmacokinetic properties, tissue distribution, efficacy and toxicity of PZ-M. In vivo studies show that PZ-M possess prolonged blood circulation time and increased oral bioavailability compared with free PZ. Meanwhile, PZ-M increase lung PZ exposure and reduce liver and kidney exposure, which indicates that PZ-M may enhance the efficacy in vivo in MRSA-related pneumonia patients and decrease potential renal and hepatic toxicities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2017.05.014DOI Listing

Publication Analysis

Top Keywords

tissue distribution
8
pz-m
5
improving pharmacokinetics
4
pharmacokinetics tissue
4
distribution pyrinezolid
4
pyrinezolid self-assembled
4
self-assembled polymeric
4
polymeric micelles
4
micelles antibiotic-resistance
4
antibiotic-resistance bacteria
4

Similar Publications

Background: Switching between versions of medication products happens commonly despite challenges in achieving bioequivalence and therapeutic equivalence. Central nervous system and psychiatric drugs, especially those that are technically demanding to manufacture and have complex pharmacokinetic properties, such as long-acting injectables (LAIs), pose particular challenges to bioequivalence and safe and efficacious drug switching.

Aims: To assess whether drugs deemed "bioequivalent" are truly interchangeable in drug switching.

View Article and Find Full Text PDF

Purpose: To improve the oral absorption of relugolix (RLGL), which has low oral bioavailability due to its low solubility and being a substrate of P-glycoprotein (P-gp). A solid self-microemulsifying drug delivery system of relugolix (RLGL-S-SMEDDS) was prepared and evaluated in vitro and in vivo.

Methods: The composition of the solid self-microemulsifying drug delivery system (S-SMEDDS) was selected by solubility study and pseudo-ternary phase diagram, and further optimized by Design-Expert optimization design.

View Article and Find Full Text PDF

Objective: The arginase inhibitor INCB001158 was evaluated for safety (primary endpoint) in locally advanced or metastatic solid tumours; pharmacokinetics, pharmacodynamics and efficacy were also assessed.

Methods And Analysis: In this non-randomised, open-label, three-part phase 1 study, INCB001158 was orally administered two times per day as monotherapy or in combination with intravenous pembrolizumab 200 mg every 3 weeks. Dose expansion was conducted in tumour-type cohorts (with or without prior anti-PD-1/PD-L1 (programmed death protein 1/programmed death ligand 1) therapy).

View Article and Find Full Text PDF

Objective: Inducing tumour cell apoptosis is a primary objective of chemotherapy but, to date, there are no validated biomarkers of apoptosis sensitivity or resistance. Our objective was to image multiple apoptosis pathway proteins at single cell level and determine multi-protein associations with recurrence risk and chemotherapy response in patients with stage II colorectal cancer (CRC).

Methods And Analysis: Multiplexed imaging of 16 proteins in the intrinsic and extrinsic apoptosis pathways at single cell resolution on resected tissue from 194 patients with stage II CRC who either received adjuvant chemotherapy (n108) or were treated with surgery only (n=86).

View Article and Find Full Text PDF

Advanced bioanalytical techniques for pharmacokinetic studies of nanocarrier drug delivery systems.

J Pharm Anal

January 2025

Research Center for Drug Metabolism, School of Life Sciences, Jilin University, Changchun, 130012, China.

Significant investment in nanocarrier drug delivery systems (Nano-DDSs) has yielded only a limited number of successfully marketed nanomedicines, highlighting a low rate of clinical translation. A primary contributing factor is the lack of foundational understanding of processes. Comprehensive knowledge of the pharmacokinetics of Nano-DDSs is essential for developing more efficacious nanomedicines and accurately evaluating their safety and associated risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!