Low-energy electron potentiometry.

Ultramicroscopy

Huygens-Kamerlingh Onnes Laboratorium, Leiden University, NL-2300 RA Leiden, P.O. Box 9504, Netherlands.

Published: October 2017

AI Article Synopsis

  • Charge transport in systems often depends on local features rather than a single global resistance value, highlighting the need for techniques that map local electronic potentials.
  • A new potentiometry method using low-energy electron microscopy (LEEM) has been developed, which is fast, has a large field of view, and is non-invasive, but is limited by the availability of characteristic reflectivity features in some materials.
  • The paper introduces an alternative low-energy electron potentiometry (LEEP) method based on a universal mirror mode transition, which is effective for a wider range of materials, and demonstrates its application in analyzing electrostatic surface potential variations and the Schottky effect in metal-semiconductor junctions.

Article Abstract

In a lot of systems, charge transport is governed by local features rather than being a global property as suggested by extracting a single resistance value. Consequently, techniques that resolve local structure in the electronic potential are crucial for a detailed understanding of electronic transport in realistic devices. Recently, we have introduced a new potentiometry method based on low-energy electron microscopy (LEEM) that utilizes characteristic features in the reflectivity spectra of layered materials [1]. Performing potentiometry experiments in LEEM has the advantage of being fast, offering a large field of view and the option to zoom in and out easily, and of being non-invasive compared to scanning-probe methods. However, not all materials show clear features in their reflectivity spectra. Here we, therefore, focus on a different version of low-energy electron potentiometry (LEEP) that uses the mirror mode transition, i.e. the drop in electron reflectivity around zero electron landing energy when they start to interact with the sample rather than being reflected in front of it. This transition is universal and sensitive to the local electrostatic surface potential (either workfunction or applied potential). It can consequently be used to perform LEEP experiments on a broader range of material compared to the method described in Ref[1]. We provide a detailed description of the experimental setup and demonstrate LEEP on workfunction-related intrinsic potential variations on the Si(111) surface and for a metal-semiconductor-metal junction with external bias applied. In the latter, we visualize the Schottky effect at the metal-semiconductor interface. Finally, we compare how robust the two LEEP techniques discussed above are against image distortions due to sample inhomogeneities or contamination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2017.05.015DOI Listing

Publication Analysis

Top Keywords

low-energy electron
12
electron potentiometry
8
features reflectivity
8
reflectivity spectra
8
potentiometry
4
potentiometry lot
4
lot systems
4
systems charge
4
charge transport
4
transport governed
4

Similar Publications

High-Throughput Information Storage in an Intelligent Response Phosphor.

ACS Appl Mater Interfaces

January 2025

Department of Physics, Georgia Southern University, Statesboro, Georgia 30460, United States.

Persistent phosphor has emerged as a promising candidate for information storage due to rapid accessibility and low-energy requirements. However, the low storage capacity has limited its practical application. Herein, we skillfully designed and developed NaGdGeO:Pb,Tb stimulated phosphor by trace doped Sm.

View Article and Find Full Text PDF

Metalloporphyrins on interfaces offer a rich playground for functional materials and hence have been subjected to intense scrutiny over the past decades. As the same porphyrin macrocycle on the same surface may exhibit vastly different physicochemical properties depending on the metal center and its substituents, it is vital to have a thorough structural and chemical characterization of such systems. Here, we explore the distinctions arising from coverage and macrocycle substituents on the closely related ruthenium octaethyl porphyrin and ruthenium tetrabenzo porphyrin on Ag(111).

View Article and Find Full Text PDF

Intervalence plasmons in boron-doped diamond.

Nat Commun

January 2025

Department of Nuclear, Plasma, and Radiological Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA.

Doped semiconductors can exhibit metallic-like properties ranging from superconductivity to tunable localized surface plasmon resonances. Diamond is a wide-bandgap semiconductor that is rendered electronically active by incorporating a hole dopant, boron. While the effects of boron doping on the electronic band structure of diamond are well-studied, any link between charge carriers and plasmons has never been shown.

View Article and Find Full Text PDF

Van der Waals electrode integration is a promising strategy to create nearly perfect interfaces between metals and 2D materials, with advantages such as eliminating Fermi-level pinning and reducing contact resistance. However, the lack of a simple, generalizable pick-and-place transfer technology has greatly hampered the wide use of this technique. We demonstrate the pick-and-place transfer of prefabricated electrodes from reusable polished hydrogenated diamond substrates without the use of any sacrificial layers due to the inherent low-energy and dangling-bond-free nature of the hydrogenated diamond surface.

View Article and Find Full Text PDF

Multiexposure Grayscale Patterns with Low-Energy Electrons.

ACS Appl Mater Interfaces

January 2025

Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.

High-energy electron beam exposure is generally recognized as the standard for achieving high-precision nanofabrication. Low-energy electron beam exposure techniques offer advantages in 3D manufacturing; however, they have received limited attention in traditional processes due to precision limitations and insufficient exposure, leading to an underestimation of their potential. In this article, we introduce a nanofabrication strategy using low-energy electrons in ice-assisted electron-beam lithography (iEBL) alleviating the compatibility issue between resolution and quasi-3D manufacturing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!