The sorting of activated receptors into distinct endosomal compartments is essential to activate specific signaling cascades and cellular events including growth and survival. However, the proteins involved in this sorting are not well understood. We discovered a novel role of EndophilinAs in sorting of activated BDNF-TrkB receptors into late endosomal compartments. Mice lacking all three EndophilinAs accumulate Rab7-positive late endosomes. Moreover, EndophilinAs are differentially localized to, co-traffic with, and tubulate, distinct endosomal compartments: In response to BDNF, EndophilinA2 is recruited to both early and late endosomes, EndophilinA3 is recruited to Lamp1-positive late endosomes, and co-trafficks with Rab5 and Rab7 in both the presence and absence of BDNF, while EndophilinA1 colocalizes at lower levels with endosomes. The absence of all three EndophilinAs caused TrkB to accumulate in EEA1 and Rab7-positive endosomes, and impaired BDNF-TrkB-dependent survival signaling cascades. In addition, EndophilinA triple knockout neurons exhibited increased cell death which could not be rescued by exogenous BDNF, in a neurotrophin-dependent survival assay. Thus, EndophilinAs differentially regulate activated receptor sorting via distinct endosomal compartments to promote BDNF-dependent cell survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5438371 | PMC |
http://dx.doi.org/10.1038/s41598-017-02202-4 | DOI Listing |
Acta Biomater
January 2025
School of Life Sciences, Keele University, Staffordshire, UK. Electronic address:
The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE, DISTALZ, Lille, France.
Background: BIN1 is a major susceptibility gene for AD and BIN1 protein interacts with Tau. However, the contribution of BIN1 and its isoforms to AD pathogenesis remains unclear. We recently described that human BIN1 isoform1 (BIN1iso1) induces an accumulation of early endosome vesicles leading to neurodegeneration in Drosophila retina and that the early endosome size regulation was conserved in human induced neurons.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Yale University, New Haven, CT, USA.
Background: Advances in Alzheimer's disease (AD) have revealed a novel fluid biomarker, tau phosphorylated at T217 (pT217-tau), in CSF and plasma, that predicts AD prior to cognitive deficits. Understanding the role of pT217-tau is important in assessing efficacy of novel treatments aimed at early-stage disease. However, it is unknown why pT217-tau is effective in predicting brain pathology, as little is known about early, soluble pT217-tau brain expression.
View Article and Find Full Text PDFSci Rep
January 2025
MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK.
Dysfunction of the endo-lysosomal intracellular Cholesterol transporter 2 protein (NPC2) leads to the onset of Niemann-Pick Disease Type C (NPC), a lysosomal storage disorder. Metabolic and homeostatic mechanisms are disrupted in lysosomal storage disorders (LSDs) hence we characterized a cellular model of NPC2 knock out, to assess alterations in organellar function and inter-organellar crosstalk between mitochondria and lysosomes. We performed characterization of lipid alterations and confirmed altered lysosomal morphology, but no overt changes in oxidative stress markers.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Sodium taurocholate co-transporting polypeptide (NTCP) has been identified as an entry receptor for hepatitis B virus (HBV), but the molecular events of the viral post-endocytosis steps remain obscure. In this study, we discovered that manganese (Mn) could strongly inhibit HBV infection in NTCP-reconstituted HepG2 cells without affecting viral replication. We therefore profiled the antiviral effects of Mn2+ in an attempt to elucidate the regulatory mechanisms involved in early HBV infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!