The goal is to develop an imaging method where contrast reflects amide-water magnetization exchange, with minimal signal contributions from other sources. Conventional chemical exchange saturation transfer (CEST) imaging of amides (often called amide proton transfer, or APT, and quantified by the metric MTR) is confounded by several factors unrelated to amides, such as aliphatic protons, water relaxation, and macromolecular magnetization transfer. In this work, we examined the effects of combining our previous chemical exchange rotation (CERT) approach with the non-linear AREX method while using different duty cycles (DC) for the label and reference scans. The dependencies of this approach, named AREX, on tissue parameters, including T, T, semi-solid component concentration (f), relayed nuclear Overhauser enhancement (rNOE), and nearby amines, were studied through numerical simulations and control sample experiments at 9.4T and 1μT irradiation. Simulations and experiments show that AREX is sensitive to amide-water exchange effects, but is relatively insensitive to T, T, f, nearby amine, and distant aliphatic protons, while the conventional metric MTR as well as several other APT imaging methods, are significantly affected by at least some of these confounding factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581699 | PMC |
http://dx.doi.org/10.1016/j.mri.2017.05.001 | DOI Listing |
J Phys Chem A
January 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
We present direct frequency comb cavity ring-down spectroscopy with Vernier filtering as a straightforward approach to sensitive and multiplexed trace gas detection. The high finesse cavity acts both to extend the interaction length with the sample and as a spectral filter, alleviating the need for dispersive elements or an interferometer. In this demonstration, a free running interband cascade laser was used to generate a comb centered at 3.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA.
When measuring real-time in vivo muscle fatigue with electromyography (), data collection can be compromised by premature sensor removal or environmental noise; therefore, the objective of this study was to develop a postmortem in vivo methodology to induce muscle fatigue and measure it using EMG. Barrows ( = 20) were stratified by weight and randomly allocated into one of two treatments. The treatments consisted of barrows being subjected to a hog electric stunner super-contraction cycle () or not () postmortem.
View Article and Find Full Text PDFvariants cause a range of epilepsy syndromes, including Dravet syndrome, leading to early cognitive and functional impairment. Despite advances in medical management, drug-resistant epilepsy remains common. Vagal nerve stimulation (VNS) has been suggested reducing seizure frequency in these patients but there is a lack of long-term follow-up, quantitative analysis that corrected for confounding factors such as antiseizure medications (ASMs) and the impact of VNS settings on response.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Saudi Aramco, Dhahran 31311, Saudi Arabia.
Amid ambitious net-zero goals and growing demands for freight logistics, addressing the climate challenges posed by the heavy-duty truck (HDT) sector is an urgent and pivotal task. This study develops an integrated HDT model by incorporating vehicle dynamic simulation and life cycle analysis to quantify energy consumption, greenhouse gas (GHG) emissions, and total cost of ownership associated with three emerging powertrain technologies in various truck use scenarios in China, including battery electric, fuel cell electric, and hydrogen combustion engine trucks. The results reveal varying levels of economic suitability for these powertrain alternatives depending on required driving ranges and duty cycles: the battery electric for regional-haul applications, the hydrogen fuel cell for longer-haul and low-load driving conditions, and the hydrogen combustion engine to meet high power requirements.
View Article and Find Full Text PDFEnergy Fuels
January 2025
Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99354, United States.
The Co-Optimization of Fuels and Engines (Co-Optima) is a research and development consortia funded by the U.S. Department of Energy, which has engaged partners from national laboratories, universities, and industry to conduct multidisciplinary research at the intersection of biofuels and combustion sciences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!