Reactive oxygen species are the reactive molecules that are derived from molecular oxygen and play an important role as redox signaling molecules to confer cardioprotection. Various scientists have demonstrated the key role of redox signaling in cardioprotection by showing a transient increase in their levels during remote ischemic preconditioning (RIPC) phase. The transient increase in reactive oxygen species levels during remote preconditioning phase may take place either through activation of K channels or through increased nitric oxide (NO) production. A transient increase in reactive oxygen species during preconditioning may also increase the expression of heat shock proteins (HSP), the level of antioxidant enzymes and decrease the expression of inflammatory genes (Egr-1) during ischemia-reperfusion phase to confer cardioprotection. The present review describes the role of redox signaling in RIPC-induced cardioprotective effect with possible mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2017.05.033 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150001, Heilongjiang Province, China.
Background: Osteoporosis (OP) is a systemic disease characterized by low bone mass. New progress has been made in the study of OP, such as lipid peroxidation. However, the role of lipid peroxides in osteoclast differentiation is still unclear.
View Article and Find Full Text PDFJ Mol Cell Cardiol
January 2025
School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, China; Chongqing Key Laboratory of New Drug Delivery System, Chongqing 400038, China. Electronic address:
Background And Aim: Our previous research indicates that sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) dysfunction facilitates the phenotypic transformation of aortic smooth muscle cells (ASMCs) and intensifies aortic aneurysm through the regulation of calcium-dependent pathways and endoplasmic reticulum stress. Our hypothesis is that additional mechanisms are involved in aortic aneurysm and atherosclerosis induced by SERCA2 dysfunction from the perspective of ASMC phenotypic transformation.
Methods & Results: In SERCA2 dysfunctional mice and their control littermates, ASMCs were isolated to analyze protein expression and cell functions, and angiotensin II was infused into these mice that were backcrossed into LDL receptor deficient background to induce aortic aneurysm and atherosclerosis.
J Colloid Interface Sci
January 2025
College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China. Electronic address:
Preventing bacterial infection and accelerating wound closure are critical for wound healing. Herein, a novel multifunctional polyvinyl alcohol-polyvinylpyrrolidone (PVA-PVP) microneedle (MN) patch embedded with enzyme-like activity (CoFe)(S) (CFS) nanoparticles and metal ions (Co and Fe) was systematically synthesized for the management of bacteria-infected wounds. CFS regulated redox homeostasis and achieved bacterial eradication while concomitantly alleviating oxidative damage.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China. Electronic address:
The Mercury (II) ion (Hg²⁺) is a toxic heavy metal that threatens biological systems by inducing oxidative stress and disrupting the redox balance. Biothiols such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) are critical in maintaining redox homeostasis and are implicated in numerous physiological and pathological processes. Understanding the complex interactions between Hg²⁺ and biothiols requires molecular tools capable of simultaneous detection.
View Article and Find Full Text PDFAnal Chem
January 2025
The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China.
Conventional dual-signal electrochemiluminescence (ECL) sensors feature high sensitivity and reliability, but the involvement of coreactants inevitably results in a complex configuration and shows reproducibility risk. Here, we propose an exogenous coreactant-free dual-signal platform, comprising luminol (anodic luminophore), CdSe quantum dots (cathodic luminophore), and CoO/TiC electrocatalyst (coreaction promoter). At different redox potentials, CoO/TiC induces water oxidation and oxygen reduction to produce OH and O radicals, which subsequently drive cathodic and anodic ECL emission, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!