A new pH-activated polymer chelate of cisplatin was synthesized using a scalable and green aqueous technique. Synthesis of the chelate was based on formation of a 6-member ring of platinum(II) with acetyl-homo-Lysine (Ac-homo-Lys), which was accomplished under completely aqueous conditions using a traceless photocleavable protection chemistry. Synthesis preceded by, first, amidation of a photocaged homo-Ac-Lys with hyaluronic acid (HA) in water using a p-hydroxyphenacyl (pHP) group as the photoremovable protecting group, followed by reaction of cisplatin (diaqua form) in water to form the reversible chelate. Platinum drug release was pH rate controlled, with more rapid release (t 20 h) at acidic pH similar to the tumor microenvironment yet slower release (t 35 h) at normal physiological pH.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5512711 | PMC |
http://dx.doi.org/10.1016/j.ejmech.2017.05.020 | DOI Listing |
J Immunother Cancer
January 2025
Sharett Institue of Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel.
Introduction: Immune checkpoint inhibitors (ICI) have improved outcomes in non-small cell lung cancer (NSCLC). Nevertheless, the clinical benefit of ICI as monotherapy or in combination with chemotherapy remains widely varied and existing biomarkers have limited predictive value. We present an analysis of ENLIGHT-DP, a novel transcriptome-based biomarker directly from histopathology slides, in patients with lung adenocarcinoma (LUAD) treated with ICI and platinum-based chemotherapy.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Medical Oncology, Sarah Cannon Research Institute, Nashville, Tennessee, USA.
Background: SL-172154 is a hexameric fusion protein adjoining the extracellular domain of SIRPα to the extracellular domain of CD40L via an inert IgG-derived Fc domain. In preclinical studies, a murine equivalent SIRPα-Fc-CD40L fusion protein provided superior antitumor immunity in comparison to CD47- and CD40-targeted antibodies. A first-in-human phase I trial of SL-172154 was conducted in patients with platinum-resistant ovarian cancer.
View Article and Find Full Text PDFMolecules
January 2025
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
Compared to natural enzymes, the development of efficient artificial simulated enzymes, such as those based on bimetallic materials with high catalytic activity and good stability, is an important way until now. Herein, we employed ZnCoO microspheres as carriers to synthesize Pt-doped composites with different amounts using a one-pot method. The morphology and structure of the synthesized materials were characterized using XRD, SEM, BET, FT-IR, XPS, and Zeta potential techniques.
View Article and Find Full Text PDFAndrology
January 2025
Department of Metabolic Disease Research, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
Background: Platinum-based chemotherapy provides curative treatment to more than 95% of patients with testicular germ cell tumor but it has negative cardiometabolic and neurological effects. Regular exercise can alleviate late chemotherapy-related toxicities. We examined the impact of a 6-month supervised aerobic-strength training on cognitive and cardiometabolic health and residual level of platinum in cancer survivors.
View Article and Find Full Text PDFMed Oncol
January 2025
Department of Research Outreach, Rubber Research Institute of Nigeria, PMB 1049, Benin City, Edo State, Nigeria.
Platinum nanoparticles (PtNPs) offer significant promise in cancer therapy by enhancing the therapeutic effects of platinum-based chemotherapies like cisplatin. These nanoparticles improve tumor targeting, reduce off-target effects, and help overcome drug resistance. PtNPs exert their anti-cancer effects primarily through the generation of reactive oxygen species (ROS), which induce oxidative stress and apoptosis in cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!