[I]IBZM is used widely for in vivo imaging of D receptors in human brain and shows relatively fast kinetics and a greater susceptibility to synaptic dopamine release than other single-photon emission computed tomography (SPECT) radioligands. A reliable and reversed-phase HPLC method using UV/VIS and radiometric detectors has been developed for qualitative analysis of BZM and IBZM and radiochemical purity in [I]IBZM preparations. The method uses gradient elution on a Zorbax XDB C-18 column with a mobile phase that consists of 10mM 3,3-dimethylglutaric acid (DMGA), pH 7.0 and acetonitrile (ACN). The flow rate was 1.0mL/min with detection at λ=254nm. The method was validated for system suitability, precision, accuracy, specificity, linearity, robustness, limit of detection (LOD) and limit of quantification (LOQ), as described in ICH guidelines. The results are described as follows: (1) The system suitability includes the tailing factor, theoretical plate number and resolution, which are 0.962, 10656.11 and 9.367, respectively. (2) For specificity, the BZM and [I]NHI did not interfere with the retention time of the [I]IBZM. (3) The percentage coefficient of variation for analysis of precision, including repeatability and intermediate precision, is less than 2.0%. (4) Accuracy of the method is within the range of 85-100%. (5) The range of linearity is from 100% to 70% radiochemical purity (%RCP) of [I]IBZM, with the correlation coefficient (R) always being above 0.995. (6) The data of method robustness are within acceptance criteria. (7) The LOD and LOQ for impurity (BZM) are 0.145 and 0.50μg/mL, respectively. All of the analysis results demonstrate that this method is sensitive, specific and suitable for routine analysis of the radiochemical purity in [I]IBZM preparations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.apradiso.2017.04.022DOI Listing

Publication Analysis

Top Keywords

radiochemical purity
16
purity [i]ibzm
12
reversed-phase hplc
8
hplc method
8
analysis radiochemical
8
[i]ibzm preparations
8
system suitability
8
method
7
[i]ibzm
6
analysis
5

Similar Publications

Lutetium-177 labeled iPD-L1 as a novel immunomodulator for cancer-targeted radiotherapy.

EJNMMI Radiopharm Chem

January 2025

Department of Radioactive Materials, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, 52750, Mexico.

Background: Cancer immunotherapy is a relatively new approach to cancer treatment. Peptides that target specific pathways and cells involved in immunomodulation can potentially improve the efficacy of cancer therapy. Recently, we reported iPD-L1 as a novel inhibitor peptide that specifically targets the cancer cell ligand PD-L1 (programmed death ligand 1).

View Article and Find Full Text PDF

Colony-stimulating factor 1 receptor (CSF1R) is almost exclusively expressed on microglia in the human brain and thus, has promise as a biomarker for imaging microglia density as a proxy for neuroinflammation. [C]CPPC is a radiotracer with selective affinity to CSF1R, and has been evaluated for in-human microglia PET imaging. The flourine-18 labeled CPPC derivative, 5-cyano-N-(4-(4-(2-[F]fluoroethyl)piperazin-1-yl)-2-(piperidin-1-yl)phenyl)furan-2-carboxamide ([F]FCPPC), was previously synthesized, however, with a low radiochemical yield using manual radiosynthesis.

View Article and Find Full Text PDF

Manganese-52 is gaining interest as an isotope for PET imaging due to its desirable decay and chemical properties for radiopharmaceutical development. Somatostatin receptor 2 (SSTR2) is significantly overexpressed by neuroendocrine tumors (NETs) and is an important target for nuclear imaging and therapy. As an agonist, [Ga]Ga-DOTATATE has demonstrated significant internalization upon interaction with receptor ligands, whereas [Ga]Ga-DOTA-JR11(as an antagonist) exhibits limited internalization but better pharmacokinetics and increased tumor uptake.

View Article and Find Full Text PDF

Compact and cGMP-compliant automated synthesis of [F]FSPG on the Trasis AllinOne™.

EJNMMI Radiopharm Chem

January 2025

School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH, UK.

Background: (S)-4-(3-F-Fluoropropyl)-ʟ-glutamic acid ([F]FSPG) is a positron emission tomography radiotracer used to image system x, an antiporter that is upregulated in several cancers. Not only does imaging system x with [F]FSPG identify tumours, but it can also provide an early readout of response and resistance to therapy. Unfortunately, the clinical production of [F]FSPG has been hampered by a lack of robust, cGMP-compliant methods.

View Article and Find Full Text PDF

Validation of an alternative two-strip method for the quality control of [Tc]Tc-ETIFENIN (TECHIDA®).

Appl Radiat Isot

March 2025

Radiopharmacy Unit, Department of Pharmacy, Groupement Hospitalier Sud - Hospices Civils de Lyon, 165 chemin du Grand Revoyet, 69495, Pierre-Bénite, France; Department of Pharmacy - Groupement Hospitalier Sud - Hospices Civils de Lyon, 165 chemin du Grand Revoyet, 69495, Pierre-Bénite, France.

For hepatobiliary scintigraphy, the radiopharmaceutical drug, ETIFENIN (TECHIDA®), labelled with technetium-99m, is used as a substitute for MEBROFENIN (CHOLEDIAM®). It is generally accepted that radiopharmaceuticals should be checked prior to injection, in particular by determining radiochemical purity, to ensure high-quality images. Radiochromatographic techniques or methods described in the Summary of Product Characteristics (SmPC) and the European Pharmacopeia (Ph.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!